

Manual F-Serie: iS-, i-, eS-Type

Manual F-Serie, iS-, i-, eS-Type Version 2019/02

ATESTEO GmbH & Co. KG Konrad-Zuse-Str. 3 52477 Alsdorf Telephone +49 2404 9870-0 E-Mail pm-service@atesteo.com www.atesteo.com

1	1 INTRODUCTION			
	1.1	MANUFACTURER	8	
	1.2	SCOPE	9	
	1.3	DISPOSAL AND ENVIRONMENT	10	
2	SA	ETY INSTRUCTIONS	12	
	2.1	GENERAL SAFETY INSTRUCTIONS	12	
	2.2	EXPLANATION OF SYMBOLS AND NOTICE	13	
	2.3	APPROPRIATE USE	14	
	2.4	MODIFICATIONS/CONVERSIONS	14	
	2.5	OPERATOR'S RESPONSIBILITY	14	
	2.6	TRANSPORT AND STORAGE	17	
	2.7	SAFETY NOTES FOR ASSEMBLY	18	
	2.8	SAFETY NOTES FOR OPERATION	18	
	2.9	LOAD LIMITS	19	
3	SYS		20	
3	SYS 3.1	ONE-CHANNEL TELEMETRY (FM)	. 20 25	
3	SY 3.1 3.2	STEM DESCRIPTION ONE-CHANNEL TELEMETRY (FM) DUAL -TELEMETRY DT / DT2 (FM/FM)	20 25 25	
3 4	SYS 3.1 3.2 ME	ONE-CHANNEL TELEMETRY (FM) Dual -Telemetry DT / DT2 (FM/FM) CHANICAL INSTALLATION	20 25 25 29	
3 4	SYS 3.1 3.2 ME 4.1	ONE-CHANNEL TELEMETRY (FM) DUAL -TELEMETRY DT / DT2 (FM/FM) CHANICAL INSTALLATION PART LIST	20 25 25 29 29	
3	SYS 3.1 3.2 ME 4.1 <i>4.1.</i>	STEM DESCRIPTION ONE-CHANNEL TELEMETRY (FM) DUAL -TELEMETRY DT / DT2 (FM/FM) CHANICAL INSTALLATION PART LIST 1 Part list F1iS/F2iS/ F23iS/ F3iS/ F4iS / F5iS	20 25 25 29 29 29	
3	SYS 3.1 3.2 ME 4.1 4.1. 4.1.	STEM DESCRIPTION ONE-CHANNEL TELEMETRY (FM) DUAL -TELEMETRY DT / DT2 (FM/FM) CHANICAL INSTALLATION PART LIST 1 Part list F1iS/F2iS/ F23iS/ F3iS/ F4iS / F5iS 2 Part list F1i/F2i	20 25 25 29 29 29 29	
3	SYS 3.1 3.2 ME 4.1 4.1 4.1. 4.1. 4.1.	STEM DESCRIPTION ONE-CHANNEL TELEMETRY (FM) DUAL -TELEMETRY DT / DT2 (FM/FM) CHANICAL INSTALLATION PART LIST	20 25 29 29 29 29 29 29 29	
3	SYS 3.1 3.2 ME 4.1 4.1. 4.1. 4.1. 4.1. 4.1.	STEM DESCRIPTION	20 25 29 29 29 29 29 29 29 29 29 29	
3	SYS 3.1 3.2 ME 4.1 4.1. 4.1. 4.1. 4.1. 4.1.	STEM DESCRIPTION ONE-CHANNEL TELEMETRY (FM) DUAL -TELEMETRY DT / DT2 (FM/FM) CHANICAL INSTALLATION PART LIST 1 Part list F1iS/F2iS/ F23iS/ F3iS/ F4iS / F5iS 2 Part list F1i/F2i 3 Part list F1i/F2i 3 Part list FLFM1iS (F0iS) 4 Part list FLFM1eS (F0eS) 5 Part list F1eS/F2eS/F3eS/F4eS	20 25 25 29 29 29 29 29 29 30 30	
3	SYS 3.1 3.2 ME 4.1 4.1. 4.1. 4.1. 4.1. 4.1. 4.2	STEM DESCRIPTION	20 25 25 29 29 29 29 29 30 30 31	
3	SYS 3.1 3.2 ME 4.1 4.1. 4.1. 4.1. 4.1. 4.2. 4.2.	STEM DESCRIPTION	20 25 25 29 29 29 29 29 29 30 30 31 33	
3	SYS 3.1 3.2 ME 4.1 4.1. 4.1. 4.1. 4.1. 4.1. 4.2. 4.2.	STEM DESCRIPTION	20 25 25 29 29 29 29 29 30 30 31 33 34	
3	SYS 3.1 3.2 ME 4.1 4.1 4.1. 4.1. 4.1. 4.1. 4.2. 4.2. 4.2. 4.2.	STEM DESCRIPTION	20 25 25 29 29 29 29 29 29 30 30 31 33 34 36	

	4.3	Μοι	JNTING THE OPTIONAL MAGNETIC SPEED DETECTION	.39
	4.4	Rec	OMMENDED FASTENING TORQUES FOR SCREWS	.41
	4.5	INST	ALLATION F1I/F2I TORQUEMETER	.42
	4.5.	1	Mounting the Stator	. 45
	4.5.	2	Recommended starting torques for screws	. 46
	4.6	INST	ALLATION FLFM1IS	.47
	4.6.	1	Mounting the Stator	. 48
	4.6.	2	Mounting the torquemeter	. 49
	4.6.	3	Mounting the optical speed detection	. 50
	4.6.	4	Mounting the stator with a foot base	. 51
	4.6.	5	Mounting the torquemeter	.53
	4.6.	6	Recommended fastening torques for screws	.54
	4.6.	7	Mounting the optical speed detection	. 54
	4.7	INST	ALLATION FLFM1ES (F0ES)	.55
	4.7.	1	Mounting the Stator	. 56
	4.7.	2	Mounting the torquemeter	.57
	4.7.	3	Recommended fastening torques for screws	. 58
	4.7.	4	Mounting the optical speed detection	. 58
	4.7.	5	Electronics	.59
	4.7.	6	Components earthing	. 59
5	SPE	ED	MEASURING SYSTEM	60
	5.1	Spe	ED MEASURING SYSTEM F1IS / F2IS	.60
	5.1.	3	Inductive Sensor	. 60
	5.1.	4	Magnetic Sensor (F1iS: 1000 increments / F2iS:1448	
	incr	emei	nts)	. 61
	5.1.	5	Adjustment of the correct distance:	. 62
	5.2	Spe	ED MEASURING SYSTEM F1/F1I (1000 INCREMENTS)	.63
	5.2.	3	Adjustment of speed measuring for torquemeter F1/F1i	. 63
	5.2.	4	Adjustment of the right distance	. 64
	5.3	Spe	ED MEASURING SYSTEM FLFM1IS, FLFM1ES	.65
	5.3.	3	Optical speed detection	. 65

	5.3.4	Setup the optical speed	
	5.3.5	Speed measuring adjustment	
6	ELECTR	RICAL INSTALLATION	71
	6.1 Maii6.2 Ear6.3 ConAcquisitio	NS SUPPLY THING INECTING THE EVALUATION UNIT / TORQUEMETER WITH A E N SYSTEM	71 71 Дата 72
7	FIRST I	NSTALLATION	74
	7.1 Firs	TINSTALLATION IS-TYPE	74
	7.1.3	Changing the Torguemeter	74
	7.2 Ter	MINAL SETTING	
	7.2.3	Terra Term Setup	
	7.2.4	Setting up the Calibration Parameters	
8	CONFIG		
	8.1 SOF	TWARE TOUCONFIG	83
	8.1.3	Setup Inductive Power Supply	
	8.1.4	Torque zero adjustment	
	8.1.5	Setup of the calibration parameters	
	8.1.6	Setup Analog Output	
	8.1.7	Setup Current Output	
	8.1.8	Setup Filter	
	8.1.9	Setup Alarm	
	8.1.10	Setup CAN Interface	
	8.2 TER	MINAL PROGRAM	
	8.3 MAII	N MENU	
	8.3.1	Filter Settings	
	8.3.2	Alarm Settings	
	8.3.3	Output Settings	
	834	Torauemeter settings	101

8.3	3.5 Read parameters	
8.3	3.6 Self test	
8.3	3.7 Analog setup	
8.3	3.8 CAN setup	
9 US	E OF THE CONTROL SIGNAL / STATUS	115
9.1	SELF-TEST	116
9.2	ZERO CALIBRATION	117
9.3	TEST SIGNAL	117
9.4	LED STATUS	117
9.4	I.1 Green LED	
9.4	1.2 Red LED	
10 I	DIGITAL INTERFACE	118
10.1	Alarm Md/N	118
10.2	Alarm IR	118
10.3	RESET ALARM	118
11 \$	SPECIAL DT2 FUNCTIONS	119
11.1	CHANNEL SELECTION BY USING AN EXTERNAL SIGNAL	
11.2	CHANNEL SELECTION BY USING A TERMINAL PROGRAM	
11.3	CHANNEL SELECTION BY USING A CAN INTERFACE	124
11.	3.1 Definition Status	
11. 12 i	3.1 Definition Status	
11. 12 i 12.1	.3.1 Definition Status PLUG CONNECTION PLUG CONNECTION F IS & F ES TYPE,	
11. 12 12.1 12.2	3.1 Definition Status PLUG CONNECTION PLUG CONNECTION F IS & F ES TYPE, PLUG CONNECTION F11/F21	
11. 12 12.1 12.2 12.3	3.1 Definition Status PLUG CONNECTION PLUG CONNECTION F IS & F ES TYPE, PLUG CONNECTION F11/F21 ELECTRICAL SPECIFICATIONS	
11. 12 12.1 12.2 12.3 12.3	3.1 Definition Status PLUG CONNECTION PLUG CONNECTION F IS & F ES TYPE, PLUG CONNECTION F I/F2I PLUG CONNECTION F11/F2I ELECTRICAL SPECIFICATIONS .3.3 RS422 Outputs	
11. 12 12.1 12.2 12.3 12. 12.	3.1 Definition Status PLUG CONNECTION PLUG CONNECTION F IS & F ES TYPE, PLUG CONNECTION F1I/F2I. ELECTRICAL SPECIFICATIONS. 3.3 RS422 Outputs 3.4 Alarm Outputs.	
11. 12 12.1 12.2 12.3 12. 12. 12. 12.	3.1 Definition Status PLUG CONNECTION PLUG CONNECTION F IS & F ES TYPE, PLUG CONNECTION F1I/F2I. ELECTRICAL SPECIFICATIONS .3.3 RS422 Outputs .3.4 Alarm Outputs .3.5 Control Input	

1	2.3.7	Analog Output C	138
1	2.3.8	Current Output	138
1	2.3.9	RS232	139
13	GENE	RAL REFERENCES	140
13.1	1 Ove	ERVOLTAGE PROTECTION	140
13.2	2 TOF	RQUEMETER WITHOUT TEST SIGNAL	140
13.3	3 Hot	۲LINE	140
13.4	4 Fla	SH UPDATE	141
14	CALIE	BRATION OF THE TORQUEMETER	143
14 15	CALIE	BRATION OF THE TORQUEMETER DMMENDATIONS FOR RESETTING THE ZERO POINT	143 ÖF
14 15 TORG	CALIE RECC QUE MI	BRATION OF THE TORQUEMETER OMMENDATIONS FOR RESETTING THE ZERO POINT EASURING FLANGE	143 OF 151
14 15 TORC 15.4	CALIE RECC QUE MI 1 THE	BRATION OF THE TORQUEMETER DMMENDATIONS FOR RESETTING THE ZERO POINT EASURING FLANGE	143 OF 151 151
14 15 TORC 15. ² 15.2	CALIE RECC QUE MI 1 THE 2 HYS	BRATION OF THE TORQUEMETER DMMENDATIONS FOR RESETTING THE ZERO POINT EASURING FLANGE RMAL INFLUENCES STERESIS-CAUSED INFLUENCES	143 OF 151 151 151
14 15 TORC 15.7 15.2 15.3	CALIE RECC QUE MI 1 THE 2 HYS 3 AGII	BRATION OF THE TORQUEMETER DMMENDATIONS FOR RESETTING THE ZERO POINT EASURING FLANGE TRMAL INFLUENCES STERESIS-CAUSED INFLUENCES	143 OF 151 151 151 152
14 15 TORC 15.7 15.2 15.3	CALIE RECC QUE MI 1 THE 2 HYS 3 AGII 4 LAT	BRATION OF THE TORQUEMETER DMMENDATIONS FOR RESETTING THE ZERO POINT EASURING FLANGE RMAL INFLUENCES STERESIS-CAUSED INFLUENCES NG ERAL FORCE INFLUENCE	143 OF 151 151 151 152 152
14 15 TORC 15.2 15.2 15.4 15.4	CALIE RECC QUE MI 1 THE 2 HYS 3 AGII 4 LAT 5 GEM	BRATION OF THE TORQUEMETER DMMENDATIONS FOR RESETTING THE ZERO POINT EASURING FLANGE RMAL INFLUENCES. STERESIS-CAUSED INFLUENCES. NG ERAL FORCE INFLUENCE.	143 OF 151 151 151 152 152 152

1 Introduction

1.1 Manufacturer

Thank you for choosing ATESTEO GmbH & Co. KG quality product. Please read the system description carefully so you make the most of the versatile features of your product.

This operating manual is a component of the F-series and should always be carefully kept with the F-series until it is disposed of. It is impossible to eliminate every danger to persons or material that the F-series might present. For this reason, every person working at the F-series or is involved in its transport, setting up, control, maintenance or repair must be properly instructed and be informed of the possible dangers.

For this purpose, the operating instructions and, especially, the safety instructions must be carefully read, understood and observed. Company ATESTEO GmbH & Co. KG reserves the right to carry out changes at its products which serve the technical further development the company ATESTEO GmbH & Co. KG. These changes aren't

documented expressly in every individual case.

This operator's manual and the information contained in it were compiled with the advisable care.

Company ATESTEO GmbH & Co. KG takes on no liability for misprints or other faults or damages resulting from it ATESTEO GmbH & Co. KG, however.

The brands mentioned in this operator's manual and product names are trademarks or registered trademarks of the respective title holders.

Please do not miss to contact us if there is anything in the operating instructions that you cannot clearly understand. We are grateful for any kind of suggestion or criticism that you may wish to make; please let us know or write to us. This will help us to make the operating instruction still more user-friendly in taking account of your wishes and requirements.

1.2 Scope

In this manual you will find all steps which are necessary to start-up the ATESTEO torque and speed measurement system.

This manual is usable for the following types of torque meters:

- Torquemeter F1iS/F2iS/F23iS/F3iS/F4iS/F5iS
- Torquemeter F1i / F2i
- Torquemeter FLFM1iS (F0iS)/ FLFM1eS (F0eS)
- Torquemeter F1eS/F2eS/F3eS/F4eS

All measurement systems work contactless and are maintenance-free. The data transmission is realized by a frequency modulated infrared transmitter. The power of the rotating electronic module works inductive.

1.3 Disposal and environment

Electrical and electronic products are subject to special conditions for disposal. Proper disposal of old equipment prevents health hazards and environmental damage.

Packaging

The original packaging of ATESTEO equipment can be recycled, as it is made of recyclable material. However, you should keep the packaging for at least the warranty period. In the event of a complaint, the torque flange, as well as the accessories, must be returned in the original packaging.

Due to ecological aspects, the return of the empty packaging should be waived.

Legally prescribed labeling for disposal

However, the disposal regulations vary from country to country, which is why we ask you, if necessary, your supplier how to dispose your waste.

2 Safety Instructions

2.1 General safety instructions

The manual must be read carefully before start-up, maintenance work or any other work on the torque measuring system. Prerequisite for the safe and proper handling of the equipment knows all safety instructions and safety regulations of the attachment.

Every safeguard needs to be correctly mounted and fully functional before any start-up.

Shafts or adapters mounted to the torque meter must be properly designed, so that critical bending moment is avoided.

Exclusively qualified laborers are allowed to do maintenance work on any electrical components (see chapter Qualified personnel). If the torque meter is sold on, these safety instructions must be included.

Note on additional standards:

IE

Low Voltage Directive 73/23/EWG, Electromagnetic Compatibility Directive 89/336/EWG and the harmonized standards

DIN EN 292-1 Safety of machinery

DIN EN 292-2 Safety of machinery

Maintenance and inspections on the electrical equipment are to be executed by trained personal. Non-designated use and modifications of the measurement system will make the EG-Conformity declaration invalid.

2.2 Explanation of symbols and notice

Warnings

Warnings are indicated by symbols in these safety instructions. The hints are going through

Signal words are introduced, which express the extent of the hazard. It is imperative that you follow the instructions and act with care to avoid accidents, personal injury and material damage.

Information

Draws attention to important information about correct handling.

Caution

Warns of a potentially dangerous situation in which failure to comply with safety requirements can result in slight or moderate physical injury.

2.3 Appropriate use

The torque meter is highly accurate and resistant to rotational speed. The signals from the flange serve to control the test bench and to analyze the components.

The torque flange is used just for torque measurement tasks within the load limits in the specification (see Technical specs). Any other use is not permitted.

The torque meter is not allowed for use as a safety component.

Note

Stator operation is only permitted when rotor is installed as described in the mounting instruction.

2.4 Modifications/conversions

Any modifications/ conversions of the design or safety engineering of the torque meter without the explicit agreement from ATESTEO will lead to the loss of warranty or liability. Any damages or injuries of personnel therefrom are in responsibility of the operator.

2.5 Operator's responsibility

Standards

The ATESTEO torque meter was designed and constructed taking account of a risk analysis and careful selection of harmonized standards and other technical specifications with which it complies. It

represents the state of the art and guarantees a maximum degree of safety.

Qualified personnel

Qualified personnel are persons who by reason of their training, experience, instruction and their knowledge of the relevant standards, regulations, accident prevention rules and working conditions have been authorized by the person responsible for the safety of the machine/product to perform the appropriate activities required, and thereby are able to recognize and prevent potentially dangerous situations (For the definition of skilled workers see VDE 0 105 or IEC 364, which also regulate the prohibition of the employment of unqualified persons).

Knowledge of first aid and the local rescue organization must also be available.

Transportation, assembly, installation, commissioning, maintenance and repair will be performed by qualified personnel or controlled by responsible skilled hands.

Safety relevant disconnecting device

The torque meter cannot implement any safety relevant cut-offs. It is in the operator's responsibility to integrate the torque meter into superior safety system.

The electronical conditioning the measurement signal should be designed so that measurement signal failure does not subsequently cause damage.

Residual risks

The power and scope of delivery of the torque meter covers only a subset of the torque measurement technology. Safety aspects of torque measurement technology must be planned, implemented and

taken into account by the system planner, supplier or operator in such a way that residual risks are minimized. Each existing regulations must be observed. Attention should be drawn to residual risks associated with torque measuring technology

In the case of a shaft break, you must ensure that there is no risk of injury. This should be done with a shaft protection cover in a closed test room with corresponding security doors. During operation, no person should stay in the test room.

Usage recommendations for personal protective equipment

Working in a workshop generally requires the wearing of safety shoes.

Use suitable gloves when handling corrosive or irritating solutions and adhesives.

2.6 Transport and storage

Check the delivery immediately for completeness and shipping damage.

Use working gloves during transport/ assembly/ maintenance.

Storage

- Do not store outdoors
- Store dry and dust-free
- do not expose to aggressive media
- protect from sunlight
- avoid mechanical shocks
- Storage temperature according data sheet

If stored for more than 3 months, regularly check the general condition of all parts and packaging.

2.7 Safety notes for assembly

Tightening torque

When tightening the screws, the specified tightening torques (see mounting instruction) must be observed.

Electric wire

All cables must be professionally laid according to the actual standards.

Rotating parts

Rotating parts must be earthed- risk of static electricity.

2.8 Safety notes for operation

As accident prevention a covering has to be fitted once the torque meters have been mounted. This is the fact if the torque meter is already fully protected by the design of the machine or by existing safety precautions. Please pay attention to following requirements for the covering as accident prevention:

- The covering must not be free to rotate
- Covering must be positioned at a suitable distance or be so arranged that there is no access to any moving parts within.
- Covering should prevent squeezing or shearing and provide sufficient protection against parts that might come loose.
- Covering must still be attached even if the moving parts of the torque flange are installed outside people's movement and working range.

Note

Improper use and handling as well as constructional changes will invalidate the EC declaration of conformity.

2.9 Load limits

Observe technical data sheets when using the torque meter. Pay particular attention to never exceed the respective maximum loads. For example:

- Load limits
- Torque oscillation width,
- Temperature limits,
- Longitudinal limit force, lateral limit force or limit bending moment,
- Limits of electrical load-carrying capacity,
- Limit rotation speed.

3 System Description

The F series torque measurement systems are representing a complete generation of torque meters with evaluation unit. With the exception of a 24VDC power supply, no external components are required for operation.

High-end temperature compensation guarantees very good stability and repeatability of the output signals. The standard model is equipped with an inductive one track speed measurement system. Stator all-in-one (type iS) provides functionality in compact way. External electronics (type eS) allows operation under extended temperature range.

Figure 3-1 F1iS

Figure 3-2 F2iS

Figure 3-3 F3iS

Figure 3-4 F4iS

Figure 3-5 F1i / F2i

Figure 3-6: FLFM1iS / F0iS

Figure 3-7 FLFM1eS / F0eS

Figure 3-8 F2eS

Figure 3-9 F3eS

Specifications

Power Supply	24V DC max. 1A
Sample Rate Torque	1000 Samples / Second
Sample Rate Speed f > 1000 Hz	1000 Samples / Second
Sample Rate Speed f < 1000 Hz	f / 2 Samples / Second
Lowest Frequency, which can be	5Hz
measured	(the output for frequencies <5Hz is 0Hz)
Analog Output Range	selectable 05V, 010V, -5+5V, -
	10+10V
Analog Output Signal Resolution	16 bit
Analog Output Impedance	50 Ohm
Optional Current Output (Torque)	selectable 420mA, 020mA
Filter	Torque: 1st-order IIR-Filter with 6
	fixed cut-off frequencies
	Speed: Moving Average with
	adjustable filter depth
CAN Interface	CAN2B
	Identifier free adjustable
	max. 1MBaud
	max. 1000
	messages/channel/second
Serial port	RS232, 19200 Baud, 8 Data Bit, No
	Parity Bit,
	1 Stop Bit, No Protocol
Frequency outputs	RS422
	Torque
	Inductive speed sensor
	Magnetic speed sensor (optional)

Table 3-1 Specifications

3.1 One-channel telemetry (FM)

Features:

- frequency output proportional to torque 60 kHz ± 20 kHz
- > analog output [V] proportional to torque with 1000 readings/s
- frequency output proportional to speed
- > analog output [V] proportional to speed
- shunt calibration
- > Zero adjustment automatically via remote control
- serial Interface RS232
- CAN 2B interface

3.2 Dual -Telemetry DT / DT2 (FM/FM)

The overall system is created to integrate a second amplifier and a second IR-telemetry during the production of the torque meter. This second amplifier amplifies the signal from the strain gage bridge with a very high accuracy. The result is a second range of highly precise measurement of small torques. Consequently, the often necessary replacement of the torque sensor for the highly precise measurement of less torques can be dropped. This second measuring system also includes temperature compensation and a shunt calibration as in the first one. (see Figure 3-11 Illustration DT / DT2).

To exploit the total measuring preciseness of the minor measuring range one must consider, to stop and unload the power train after each measuring cycle, which takes place under a high torque load. Afterwards the systems needs to be reset to "0" otherwise the hysteresis figures,

recorded in the spring body, would overlap the more sensitive second measuring channel.

Figure 3-11 Illustration DT / DT2

With the Dual –Telemetry system (FM/FM) it is possible to measure with one torque meter high and small torques with a high accuracy.

With F1i series the dual measuring values are available in parallel indicated by DT.

With FxiS and FxeS series the dual measuring values must be switched. This is indicated by DT2.

Features:

- > 2 x frequency output proportional to torque 60 kHz \pm 20 kHz
- frequency output proportional to speed
- > analog output [V] proportional to torque with 1000 readings/s
- > analog output [V] proportional to speed
- shunt calibration
- > Zero adjustment automatically via remote control
- System-parameter via RS232.
- > CAN 2B interface
- > DT for parallel use, DT2 for switched use of both channels

Please read chapter '11. Special DT2 functions' for setup.

4 Mechanical Installation

4.1 Part list

4.1.1 Part list F1iS/F2iS/ F23iS/ F3iS/ F4iS / F5iS

The complete measuring equipment consists of the following parts:

- Torquemeter (Rotor)
- Stator All-In-One (Evaluation unit)
- Connectors 16 pole male / 12 pole female

4.1.2 Part list F1i/F2i

Complete measuring equipment consists of following parts:

- Torquemeter (Rotor)
- Stator top and lower part
- Connectors 10 / 12 pole

4.1.3 Part list FLFM1iS (F0iS)

The complete measuring equipment consists of the following parts:

- Torquemeter (Rotor)
- Stator All-In-One (Evaluation unit)
- Connectors 16 pole male / 12 pole female

4.1.4 Part list FLFM1eS (F0eS)

The complete measuring equipment consists of the following parts:

- Torquemeter (Rotor)
- Stator FLFM1eS
- Electronics TCU 2 (Torque Control Unit)

4.1.5 Part list F1eS/F2eS/F3eS/F4eS

The complete measuring equipment consists of the following parts:

- Torquemeter (Rotor)
- Stator type eS
- Electronics TCU2 (Torque Control Unit)

4.2 Installation F1iS / F2iS

The following figure shows the correct offset between the end faces of the dynamometer-flange and the dynamometer-housing. F1iS / F2iS

Figure 4-1 Offset between end faces (dynometer flange/dynamometer-housing)

Туре	Nominal data S [mm]	
F1iS/F2iS/F23iS/	+0,5 00,5 without magnetic speed	
F3iS/F4iS	encoder	
F1iS	+0,5 00,5 with magnetic speed encoder	
F2iS	+0,5 00,5 with magnetic speed encoder	

Table 4-1 Nominal data S[mm]

4.2.1 Mounting of the Stator

If it is possible, mount the stator of the torquemeter with the electronichousing aligned to a 9 o'clock position. In this case no liquid can concentrate in the housing. As a precaution the electronic components are sealed with protective paint.

Figure 4-2 Mounting of the stator

4.2.2 Mounting of the foot base

Example for a complete mounted system:

Figure 4-3 Mounting of the foot base

Figure 4-4 Mounting of the stator with foot plate

4.2.3 Mounting the angle plate to the base plate F1iS / F2iS

Figure 4-5 Mounting to angle plate

Туре	r [mm]	a [mm]	Screws
F1iS	215	7,5	M8
F2iS	255,6	8	M8

Table 4-2 Mounting to angle plate

Figure 4-6 Mounting of torque meter

8x bolt DIN912 (Hexagon socket)

M12x40 (Length depends on thickness of customers adapter flanges)

Figure 4-7 Mounting adapter flange with suitable screws

ATESTEO

4.2.4 Mounting with the foot base

Example for a complete mounted system:

Figure 4-8 Fully assembled system (F2iS)

4.3 Mounting the optional Magnetic Speed Detection

Figure 4-9 Mounting the optional magnetic speed detection

Figure 4-10 Air gap between speed measuring system and measuring flange (see Chapter 5 Speed measuring system)

F1iS/F1eS				
Rated Torque Nm	LKR 130 mm	Quality	Quantity	Torque Nm
up to 2.500	8x M12	12.9	8	135
up to 2.100	8x M12	10.9	8	115
up to 1.400	8x M12	8.8	8	77
		F2iS/F2eS		
Rated Torque	LKR	Quality	Quantity	Torque
Nm	196 mm			Nm
up to 20.000	16x M18	12.9	16	470
up to 15.000	16x M16	12.9	16	330
up to 9.000	16x M16	10.9	16	280
up to 6.000	16x M16	8.8	16	190
		F3iS/F3eS		
Rated Torque Nm	LKR 290 mm	Quality	Quantity	Torque Nm
up to 50 kNm	24x M20	12.9	24	650
F4iSF4eS				
Rated Torque Nm	LKR 369 mm	Quality	Quantity	Torque Nm
up to 100 kNm	16x M30	12.9	16	2300
F23iS				
Rated Torque Nm	LKR 218 mm	Quality	Quantity	Torque Nm
up to 30 kNm	16x M20	12.9	16	650

4.4 Recommended fastening torques for screws

Table 4-3 Recommended fastening torques for screws

4.5 Installation F1i/F2i torquemeter

Order of assembly F1i / F2i torquemeter:

- 1 Stator ring
- 2 Torquemeter
- 3 Stator top part

Figure 4-11 Statorring

Figure 4-12 Statorring

Figure 4-13 Stator top part

The following figure shows the correct offset between the end faces of the dynamometer-flange and the dynamometer-housing. **F1i and F2i**

Figure 4-14 Offset between flange and housing

Туре	Nominal dats S [mm]		
F1 / F1i	+125 without speed sensor		
F2 / F2i	-14 –7 without speed sensor		
F1 / F1i	-1,522,5 with speed sensor		
F2 / F2i	-3,54 –4,5 with speed sensor		

Figure 4-15 Nominal data S [mm]

4.5.1 Mounting the Stator

If it is possible place the stator of the torque meter F1i / F2i so that the housing of the electronic is adjusted at the left side. In this case no liquid can be collect in the stator. The hole electronic is filled with a potting component and can't be damaged by liquid.

Figure 4-16 Example on how to place a stator

4.5.2 Recommended starting torques for screws

F1i				
Rated Torque Nm	PCD	Quality	Quantity	Torque Nm
up to 2.500	8x M12	12.9	8	135
up to 2.100	8x M12	10.9	8	115
up to 1.400	8x M12	8.8	8	77
		F2i		
up to 15.000	16x M16x1,5 fine thread	12.9	16	380
up to 10.000	16x M16	12.9	16	330
up to 9.000	16x M16	10.9	16	280
up to 6.000	16x M16	8.8	16	190

Table 4-4 Technical data F1i/F2i

4.6 Installation FLFM1iS

Order of assembly: FLFM1iS torquemeter

- 1. Stator
- 2. Torquemeter

The following figure shows the correct offset between the end faces of the dynamometer-flange and the dynamometer-housing.

FLFM1iS

Туре	Nominal data S [mm]
FLFM1eS	7,7 8,0 8,5

Table 8 3 Nominal data

ATESTEO

4.6.1 Mounting the Stator

The stator of the torquemeter must be mounted with the electronichousing aligned to a 9 o'clock position. In this case no liquid can concentrate in the housing. As a precaution the electronic components are sealed with protective paint.

3.

Figure 4-18 Mounting the stator

4.6.2 Mounting the torquemeter

Figure 4-20 Mounting the rotor

4.6.3 Mounting the optical speed detection

Figure 4-21 Optical speed detetction

4.6.4 Mounting the stator with a foot base

By using the optical speed detection it is not recommended, to mount the stator through foot mounting base. The alignment (rotor – stator) must be very exact. Otherwise it is possible, that there arise unwanted contact between rotor and stator.

Example for a complete mounted system:

Figure 4-22 Complete mounted system

4x bolt DIN912 (Hexagon socket) M8

Figure 4-23 Mounting stator with foot base

8x bolt DIN912 (Hexagon socket) M10x30 (Length depends on thickness of customers adapter flanges)

Figure 4-24 Mounting torquemeter

4.6.6 Recommended fastening torques for screws

FLFM1iS (F0iS)				
Rated Torque Nm	PCD 75 mm	Quality	Quantity	Torque Nm
Up to 500	8x M10	12.9	8	83
Up to 800	8x M10	12.9	8	83
Up to 1.000	8x M10	12.9	8	83

Figure 4-25 Fastening torque

4.6.7 Mounting the optical speed detection

Figure 4-26 Mounting optical speed detection

ATESTEO

4.7 Installation FLFM1eS (F0eS)

Order of assembly: FLFM1iS torquemeter

- 1. Stator
- 2. Torquemeter
- 3. Electronics

The following figure shows the correct offset between the end faces of the dynamometer-flange and the dynamometer-housing.

FLFM1eS

Figure 4-27 Correct offset between house flange and housing

Туре	Nominal data S [mm]
FLFM1eS	7,7 8,0 8,5

Table 4-5 Nominal data S[mm]

4.7.1 Mounting the Stator

The stator of the torquemeter must be mounted with the electronichousing aligned to a 9 o'clock position. In this case no liquid can concentrate in the housing. As a precaution the electronic components are sealed with protective paint.

Figure 4-28 Mounting the stator

4.7.2 Mounting the torquemeter

8x bold DIN912 (Hexagon socket) M10x40 (Length depends on thickness of customers adapter flanges)

Figure 4-30 Mounting the torquemeter

4.7.3 Recommended fastening torques for screws

FLFM1eS (F0eS)				
Rated Torque Nm	PCD 75 mm	Quality	Quantity	Torque Nm
Up to 500	8x M10	8.8	8	50
Up to 800	8x M10	10.9	8	70
Up to 1.000	8x M10	12.9	8	80

Table 4-6 Recommended fastening torques

4.7.4 Mounting the optical speed detection

Figure 4-31 Mounting optical speed detection

Figure 4-32 Evaluation unit TCU2

4.7.6 Components earthing

Please take care of the TCU2 housing. It has to have the same potential with the stator ring. The machine parts are often lacquered, so we advise to set up additional electrical connection between the both components

ATESTEO

5 Speed measuring system

5.1 Speed measuring system F1iS / F2iS

5.1.3 Inductive Sensor

The inductive speed sensor is equipped as standard and supplies one track with 60 increments per round at the torquemeter F1iS and 120 increments per round at the torquemeter F2iS. It is located at the inner side of the stator ring.

Figure 5-1 Inductive sensor

The air-gap between rotor and stator is factory calibrated to an operational distance of 0.5 up to 2.5 mm and needs no readjustment. The speed-sensor signals are provided as RS422 signals and as processed values for the analog outputs and CAN messages. The RS422 signals can be accessed by connector X750.

5.1.4 Magnetic Sensor (F1iS: 1000 increments / F2iS:1448 increments)

The magnetic speed sensor is available as an optional high-resolution speed acquisition providing 2 tracks with 1000 increments per round at F1iS and accordingly 1448 increments per round at F2iS and a 90° phase shift, thus giving the capability for detecting the rotational direction. It is located on a mounting bracket placed above the electronic compartment. The magnetic speed sensor consists of a sensor module which is connected via a 7 pole connector to the stator electronics.

The speed-sensor signals are provided as RS422 signals and as processed values for the analog outputs and CAN messages. The RS422 signals can be accessed by connector X750, output pins 3 and 4 for track 1 and pins 5 and 6 for track 2 (refer to chapter "Electrical specifications").

ATESTEO

5.1.5 Adjustment of the correct distance:

To adjust the right distances, loosen 2 screws like shown in the picture below. The distance should be ideally 0,5mm.

Figure 5-2 Adjustment of correct distance

F1iS -> 0,5mm (tolerance \pm 0,4mm) F2iS -> 0,5mm (tolerance \pm 0,4mm)

5.2 Speed measuring system F1/F1i (1000 increments)

5.2.3 Adjustment of speed measuring for torquemeter F1/F1i

After each assembly of the torquemeter housing at a new machine the distance between the speed module and the impulse generator wheel must be checked and if necessary adjust.

The optimum air gap between the speed module and the impulse generator wheel is 0.5mm.

The air gap tolerance is $\pm 0,4$ mm. Additional adjustments are not required.

Figure 5-3 Adjustment of speed measuring

ATESTEO

5.2.4 Adjustment of the right distance

At first unscrew the internal hexagon screw (fixing screw). Now it is possible to move the speed module radial so that the distance between the speed module and the impulse generator wheel can vary. With the special shim plate the difference can be adjust to the nominal dimension. If the difference is correct, fix the screw and the adjustment is done.

Figure 5-4 Shim plate for speed module

For a first check turn the torquemeter by hand.

5.3 Speed measuring system FLFM1iS, FLFM1eS

5.3.3 Optical speed detection

The optical speed sensor is available as an optional high-resolution speed acquisition providing 2 tracks with alternate 240, 360 or 400 increments per round and a 90° phase shift, thus giving the capability for detecting the rotational direction. It is located at the inner side of the stator-ring.

Figure 5-5 Optical speed detection

The speed-sensor signals are provided as RS422 signals and as processed values for the analog outputs and CAN messages. The RS422 signals can be accessed by connector X750 (refer to chapter "Electrical specifications").

5.3.4 Setup the optical speed

With every modification (transformation) of the measuring flange housing into a new machine the optical speed sensing has to be newly balanced. This is important to do, because changing the distance

between speed disk and cover of receiver side causes a change of signal amplitude. Moreover, the electrical properties can vary in different modules. To setup the signal processing board you need to use an oscilloscope.

For balancing do the following:

Figure 5-6 Signal processing unit

To carry out the adjustment procedure the measuring points have to be measured with oscilloscope.

At MP1 till MP4 there will be measured 4 voltage signals from the IR receiver (transistor).

With the speed there are sinusoidal signals, wherein MP1 to MP2 and MP3 to MP4 have 180° phase displacement and the both pairs have 90° to each other phase displacement. For the basic settings it will be sufficient to turn the measuring flange by hand during the measurement.

The aim of the setting is that all speed signals provide output sinusoidal signals with approximately equal amplitude in the range of about 0.8V - 6V.

With a potentiometer TRM100 the electric current will be set, which flows through the IR transmitter diodes.

With the current raising the amplitude of the AC voltage increases and the DC voltage of the speed signals decreases (MP1 till MP4).

The current has to be so set, so that a minimal voltage would be in MP1 till MP4 0,8V till 1V.

The sinusoidal voltage signal must not be cut off in upper and lower max. point.

The amplitude has to be so set, so that the sending current could be so high as possible. The sinusoidal voltage signals of the speed signals have then the smallest DC offset.

5.3.5 Speed measuring adjustment

The optical speed mask position at the speed module is factory adjustment and needs no readjustment Additional adjustment is not required.

Speed Module for Torquemeter FLFM1iS, FLFM1eS

Figure 5-7 Speed measuring adjustment

The optimum position of the speed measuring system will be determined by positioning rotor to stator.

Following masses have to be observed.

	A: axial displacement Rotor-Stator	B: axial deflection
without optical speed sensing	28 28,329,5	±0,3 mm
with optical speed sensing	28,328,529	±0,3 mm

For a first check turn the torquemeter by hand.

6 Electrical Installation

The parts delivered are dependent upon customer specific orders. If you have ordered a complete measurement system, all electrical and software parameters are pre-installed.

6.1 Mains Supply

The purchased ATESTEO measuring systems F1iS/F2iS, F1i/F2i, FLFM1iS, FLFM1iS, FLFM1eS have to be powered with DC voltage of 24-30V / 1A. The power input depends on the sensor system. The power consumption lies between 4 and 10 watts. The power supply must be protected with a 1AT fuse

against overcurrent.

6.2 Earthing

The housing of the evaluation unit has an earth connection. The internal ground is separated from that earth. The torquemeter **must** be connected to the earth of the test bench for proper working. The shielding of the connecting cables is connected to the connectors at both ends.

6.3 Connecting the Evaluation Unit / Torquemeter with a Data Acquisition System

To keep the EMV – Norm EN61000-6-4 / VDE 0839 parts 6-4, the following procedure to handle the connecting cable is recommended. Please use shielded servo cable with 4x 2x 0.14mm² (twisted pair) + 4x 0,5mm² wire for the connection to X750 and shielded servo cable with 8x 2x 0.25mm² wire (twisted pair) for the connection to X 751/752. The shielding of the cable must be connected to the connectors on both ends.

The following grounding scheme is recommended:

Figure 6-1 Grounding scheme

The shielding must be connected on both sides (torquemeter and measuring rack).

The usage of the equipment assumes keeping the general safety regulations in mind!

- 7 First Installation
- 7.1 First Installation iS-Type

ATTENTION!!!

If you have purchased a complete torque measurement system consisting of a torquemeter and a corresponding stator, you may skip the following articles. Otherwise the following adjustments of the default settings are absolutely necessary to properly run the system!

7.1.3 Changing the Torquemeter

For your convenience the torquemeters of the F1iS series are interchangeable with the same stator. All you need is to enter the parameters supported by the 'Torque Transducer Test Report' which is delivered with the new torquemeter.

TORQUE TRANSDUCER TEST REPORT

Torque transducer test report

Serial number: F1iS - 4759

Range1				
Rated Torque:	3000	Nm		
Calibrated Torque:	3000	Nm		
Sensitivity cw:	6,8721	Hz/Nm		
Sensitivity ccw:	6,8684	Hz/Nm		
Test signal:	1455,01	Nm	9999	Hz
Accuracy (Nonlinearity and hysteresis):	0,19	% of rated torque		
Temperature effect on zero:	0,1% of rated torque / 10 °C			

Compensated Temperatur Range (Rotor/Stator): Gravitational Constant Alsdorf: Ambient Temperature:		0°C/0°C to 80°C/70°C 9,81106 m/s² 23 °C	
Remarks: Maximum Speed: Speed Disc: Warming Up Time:	12000 rpm i60 ppr 30 minutes		
Date: 30.06.2016	Signed:		

First Installation F1i/F2i

With every torquemeter you get a torque transducer test report.

These parameters must be saved via the RS232 interface into the stator.

The electronic unit for measuring and transmission of torque is placed in the measuring flange. The unit is supplied by a reference voltage of 10VDC. For good voltage stability, the input voltage should be about 15V. The shunt calibration switch is closed at an input voltage above 17V. In normal operation mode the frequency of the infrared data stream is 60 kHz \pm 20 kHz.

The table shows the function of the automatically power supply adjustment.

Sp. Amplitude	Frequency / Hz	Meaning
11,0	40000	amplitude too low; no stable supply
		voltage for the rotating electronic
11,2	45120	amplitude too low
11,4	50350	amplitude too low
12,0	54780	amplitude too low
12,5	58340	amplitude too low
12,7	60090	amplitude correct; normal working
		range
13,7	60090	amplitude correct; normal working
		range
14,7	60090	amplitude correct; normal working
		range
15,0	63100	amplitude correct; calibration jump
16,0	63100	amplitude correct; calibration jump
17,0	63100	amplitude correct; calibration jump
18,0	63100	amplitude correct; calibration jump
20,1	0	amplitude too high; overvoltage
		protection

Table 7-1 Power supply adjustment

The optimal setting for the power supply amplitude in this example is:

- (s) = 13,7 (PS. Voltage)
- (7) = 17,0 (Calibration jump [V])

7.2 Terminal Setting

7.2.3 Terra Term Setup

This program is a freeware and you can find it on the delivered CD.

Tera Term: New (connection		×
○ <u>T</u> CP/IP	H <u>o</u> st:	192.168.100.141	_
			23
⊙ <u>S</u> erial	Po <u>r</u> t:	COM2	
	OK	Cancel <u>H</u> elp	

Figure 7-1Tera Term: New Connection

Font setup:

Tera Term: Font setup		×
Eont: Courier O Courier New ች CourierPS ች DotumChe Fixedsys	Size: 12 10 12 12 15 ▼	OK Cancel
	AaBbYyZz	

Figure 7-2 Tera Term: Front setup

Terminal setup:

Tera Term: Terminal setup		×
Terminal size BO X 24 Term <u>s</u> ize = win size Auto <u>w</u> indow resize	New-line <u>R</u> eceive: CR ▼ Trans <u>m</u> it: CR ▼	OK Cancel
Terminal ID: VT100 - Answerback:	☐ <u>L</u> ocal echo ☐ A <u>u</u> to switch (VT<->	<u>H</u> elp

Figure 7-3 Tera Term: Terminal setup

Serial port setup:

Tera Term: Serial port set	up	×
<u>P</u> ort: Baud rate:	COM1 • OK	
<u>D</u> ata:	8 bit Cancel	
P <u>a</u> rity:	none	
<u>S</u> top:	1 bit • Help	
<u>F</u> low control:	none	
Transmit delay	<u>c</u> har <mark>0 msec/line</mark>	

Figure 7-4 Tera Term: Serial port setup

7.2.4 Setting up the Calibration Parameters

Connect the Torquemeter F1iS/F2iS, F1i/F2i, FLFM1iS or FLFM1eS to the serial interface (RS232 19200 Baud, 8bit, no parity, no protocol).

To activate the serial interface press the key '#', then press 'T' to enter the torquemeter setup menu.

	🛄 Te	era Term - (OM1 VT								_ 🗆	×
	Eile	Edit Setup	Control	<u>W</u> indow	Help							
	***	******	*****	*****	******	*****	****	****	********	********	********	
	*				To	rqueme	ter S	etti	ngs		*	
	***	*******	*****	*****	******	*****	*****	****	**********	*********	********	
	(b)	MD Type Serial H	Number			0 1610		(7)	Zero Output	[Hz]	59998	
((1) (2) (3)	Sensition Sensition Rated To	vity + vity -	[Hz/Nm [Hz/Nm [Nm]] 10.] 10. 20		$\overline{}$	(9) (0)	Calibration Calibration	Jump [V] Jump [Hz]	15.6 9959	
	Ľ	naceu n	n que	[]	20	00.0		(p)	PS. on/off		1	
								(s) (y)	PS. voltage PS. AUTO vo	ltage	13.1	
	(x)	Imp/Rev	ind.			60		Fre	quency - Tor	que 1	599 <u>9</u> 7	
	(m)	Max. Spe	ed [r)m]		2000		(a)	Set Zero			
	-n-	Refresh	-r-	Read	Param.	-2-	Selft	est			-e- EXIT	•
		750										

Figure 7-5 Setting calibration parameters

With the terminal program you can set up the parameters for the connected torquemeter. Take the parameters (1, 2, 3, b) from the torque transducer test report and fill in the properties as shown.

TORQUE TRANSDUCER TEST REPORT

1721	P/N:	4831	Serial number S	5/N :	F1iS -
	Rang	e1			
	Rated	l Torque	500	Nm	
	Calibr	rated Torque	500	Nm	
	Sensi related	tivity clockwise to calibrated torque	38.9442	Hz/Nm	
	Sensi	tivity			
	anticl	ockwise	38.9365	Hz/Nm	
	Calibr	ration Jump	255.75	Nm	9960

Sensitivity clockwise	= Sensitivity+
Sensitivity anticlockwise	= Sensitivity-

ATESTEO

supply adjustment.

After these steps the frequency Md1 must be about 60000 Hz.

With each new installation (Torquemeter/Stator) it is recommended to adjust the inductive power supply. The amplitude of the inductive power supply can be automatically set up by pressing 'y'.

8 Configuration

8.1 Software TCUConfig

Connect the Torquemeter to the serial interface. Install the program TCUConfig on your PC and start the program.

TCUConfig I/O
Serial Ports
COM1 Torquemeter Serial No. 1894
C COM2 N.C.
C COM3 N.C.
C COM4 N.C.
C COM6 N.C.
C COM7 N.C.
CAN
C CAN Peak Modul1
Offline Search VCK

Figure 8-1 TCU Configuration

The TCUConfig program scans all ports after you press Search. Select the port which is connected to the torquemeter. It is also possible to

work offline with the setup program. In this case you can store a parameter list for later use.

If you have some Bluetooth interfaces or other measurement equipment at the serial port it can be that the Search routine doesn't work and the program hang up. In this case select only the used serial port.

After selecting the correct port an overview of all settings is shown.

equemeter COM-Port Terminal Service Measure Info	Help				Control Contro	
ORQUE TRANSDUCER TEST REPORT ANA	LOGUE OUTPUT			FIL	TER	
erial number Rotor S/N: 1321 Ou	a1 Torque	e 1 Filter A 📃 💌	-10V to 10V 💌	A (I	IR Filter)	
abod Taxana 1 / Nac. 650 Ou	k2 Speed	в 💌	-10V to 10V 🗨	B(I	IR Filter) OFF 💌	
antitivity clock wise / Hz/Nm 31.5792 Ou	t3 Status	<u>.</u>	0V to 5V 💌	Spe	eed A average OFF 💌	
ensitivity anticlockwise / Hz/Nm 31.5792	Surrent Out	Current B	anne	Spe	eed B average OFF 💌	
Banas2	ON OFF	C 0 · 20	mA 📀 4 · 20mA			
				T	orque 1 -0.1Nm	
ensitivity clockwise / Hz/Nm	0		PM			
nsitvity entitlockwise / Hz/Nm	, 	AD4		S	peed A 0.0rpm	
Speed Sensor Seria	al number Stator:	J Torque M	in. /Nm 2000	S	Speed B 0.0rpm	
eed B · Imp/Rev magn/opt 600 Hard	Iware Version	J202 Torque M	ax. /Nm 2000			
seed A - Imp/Rev inductive: 60 Softw	ware Version	49 Speed Mi	n. /rpm -10000			
ax Speed / rpm 25000 Activ	re Interface	Speed Ma	ax. /rpm 10000		Show Status Reset Status	
CAN INTERFACE	Identifier	Byte 7 Byte 4	Byte3 Byte 0	values.	/s	
AN Receive Identifier Status	101	Torque 1 Filter B	Speed B	OFF		
ANSpeed	102	Torque 2 Filter A	Speed B	OFF		
	102	and the second second	Speed R	OFF		
1 M • 500 K • 250 K • 125 K	100	Torque 2 Filter B			and a second sec	
1 M ● 500 K ○ 250 K ○ 125 K entifier CAN_Format CAN_Format2	103	Torque 2 Filter B	Torque 2 Filter A	OFF	*	
1 M • 500 K 250 K 125 K entifier CAN_Format CAN_Format CAN_Format 11 Bit • Long • Intel • Intel	103	Torque 2 Fiker B Torque 1 Fiker A Torque 1 Fiker B	Torque 2 Filter A	OFF		
1 M • 500 K • 250 K • 125 K entifier • CAN_Format • CAN_Format2 • Intel 11 Bit • Long • Intel • Intel 23 Bit • Float • Motorola	104 105 106	Torque 2 Filter B Torque 1 Filter A Torque 1 Filter B Torque 1 Filter A	Torque 2 Filter A Torque 2 Filter B Speed A	OFF OFF OFF		
1 M ⊂ 500 K ⊂ 250 K ⊂ 125 K entifier CAN_Format CAN_Format2 11 Bit ⊂ Long ⊂ Intel 23 Bit ⊂ Float ⊂ Motorola	103 104 105 106 107	Torque 2 Filter B Torque 1 Filter A Torque 1 Filter B Torque 1 Filter A Torque 1 Filter B	Torque 2 Filter A Torque 2 Filter B Speed A Speed A	OFF OFF OFF OFF		
1M © 500 K © 250 K © 125 K entifier CAN_Format © All cong © Intell 11 B4 © Long © Intell © Intell 23 B4 © Float © Motorola	103 104 105 106 107 108	Torque 2 Filter B Torque 1 Filter A Torque 1 Filter B Torque 1 Filter A Torque 1 Filter B Dx0000	Torque 2 Filter A Torque 2 Filter B Speed A Speed A Alarm	OFF OFF OFF OFF		
1M © 500 K © 250 K © 125 K entilier CAN_Format. © Armat2. 11 B4 © Long © Intel 23 B4 © Float © Motorola	103 104 105 106 107 108 109	Torque 2 Filter B Torque 1 Filter A Torque 1 Filter B Torque 1 Filter B Ox0000 Torque Min/Max	Torque 2 Filter A Torque 2 Filter B Speed A Speed A Alarm Speed Min/Max	OFF OFF OFF OFF OFF		

Figure 8-2 Settings after selecting correct port

8.1.3 Setup Inductive Power Supply

Service – Setup Inductive Power Supply

The stator searches for the right settings of the inductive power supply. If everything is o.k. the frequency of the torque signal is about 60000 Hz. In the menu "Service Setup inductive Power Supply" it is possible to activate this operation by hand.

8.1.4 Torque zero adjustment

With a right click on the torque value it is possible to show the frequency and to set the torque to 0 Nm. Please use torque = 0 only if you 100% sure, that the torquemeter is free of torque.

Figure 8-3 Torque zero adjustment

ATESTEO

8.1.5 Setup of the calibration parameters

TURQUE TRANSDUCER TES	REPORT
Serial number Rotor S/N:	1321
Range1	
Rated Torque 1 / Nm	650
Sensitivity clockwise / Hz/Nm	31.5792
Sensitivity anticlockwise / Hz/Nm	31.5792
Range2	
Rated Torque 2 / Nm	
Sensitivity clockwise / Hz/Nm	
Sensitivity anticlockwise / Hz/Nm	
Speed Senso	r
Speed B - Imp/Rev magn/opt:	600
Speed A - Imp/Rev inductive:	60
N	25000

Figure 8-4 Setup of calibration parameters

Fill in the form showed above with the parameters from the Torque Transducer Test Report. These parameters are very important to get the right physical values at the analog output, the display and the CAN Interface.

8.1.6 Setup Analog Output

Jut1	Torque 1 Filter A	•	-10V to 10V 👱
)ut2	Speed B	•	-10V to 10V
Dut3	Status	-	0V to 5V 💆
Current Out		Current I	Range

Figure 8-5 Setup analog output

The torquemeters F1iS/F2iS, F1i/F2i, FLFM1iS, FLFM1eS include up to three (A/B/C) analog outputs. Here it is possible to select different signals for the analog outputs. You can get your F1iS / F2iS with a lot of options. Whichever is the installed option the menu shows different choices for the analog output.

For Out1 / Out2 it is possible to select between:

- Torque 1 Filter A
- Torque 1 Filter B
- Speed

It is not possible to show the same channel on both outputs. The output range can be selected between:

- -10V to 10V
- -5V to 5V
- 0 to 5V
- 0 to 10V

For circuit details and sample circuits please refer to chapter "Electrical specifications".

8.1.7 Setup Current Output

Dut1	Torque 1 Filter A	-	-10V to 10V 🔄
Dut2	Speed B	•	-10V to 10V 💽
Dut3	Status	•	0V to 5V 👱
Current Out		Current	Range
CON	OFF	C 0-2	0mA 💽 4 - 20mA

Figure 8-6 Setup current output

The current output can be switched on or off in this edit menu. Moreover, it is possible to select between 0-20mA and 4-20 mA. If the current output was used, then the analog output A isn't available anymore.

8.1.8 Setup Filter

FILTER	
A (IIR Filter)	OFF 👤
B (IIR Filter)	100 Hz 💌
Speed A average	120 💌
Speed B average	OFF 💌

Figure 8-7 Setup filter

Filters used here, acting on analog and CAN outputs, but not on frequency outputs.

For the torque signals the both filters are available. Thus one filter can be used for the automation system and the other one for the measuring equipment. The filter A and B for the torque signal are IIR Filter and the filter for the speed signals are moving average filter.

8.1.9 Setup Alarm

ALAHM	
orque Min. /Nm	-2000
Forque Max. /Nm	2000
Speed Min. /rpm	-10000
Speed Max. /rpm	10000

Figure 8-8 Setup alarm

Here it is possible to setup the alarm limits for the speed signal and the torque signal.

For circuit details and sample circuits please refer to chapter "Electrical specifications".

ATESTEO

8.1.10 Setup CAN Interface

ON 📀 C)FF 32	entifier Status
ANSpeed 1 M	© 500 K C	250 K C 125 K
entifier 11 Bit	CAN_Format C Long C Float	CAN_Format2 © Intel © Motorola

Figure 8-9 Setup Can Interface

Please select the right parameter which corresponds with your measuring equipment.

Identifier	Byte 7 Byte 4	Byte3 Byte 0	values/s	
100	Torque 1 Filter A	Speed B	250 💌	
101	Torque 1 Filter B	Speed B	OFF 💌	
102	Torque 2 Filter A	Speed B	OFF 🗾	
103	Torque 2 Filter B	Speed B	OFF 🗾	
104	Torque 1 Filter A	Torque 2 Filter A	OFF	
105	Torque 1 Filter B	Torque 2 Filter B	OFF 🗾	
106	Torque 1 Filter A	Speed A	OFF 💽	
107	Torque 1 Filter B	Speed A	OFF 💽	
108	0x0000	Alarm	OFF 💌	
109	Torque Min/Max	Speed Min/Max	OFF 💽	
110	Temperature	Status	2 🗸	

Figure 8-10 Signals at CAN-BUS

You can choose here which signals at CAN-BUS have to be displayed and with witch data rates.

The value of the output data depends on the selected format and the measured value. When the data format 'long' is selected, the measured values are multiplied by a certain factor to retain decimal places. Thus the received data must be divided by that factor by the acquisition system to get back the measured data.

Measured Value: float	Measured Value: long (x factor)	Unit
Speed inductive	Speed inductive x 10	rpm
Speed magnetic\optical	Speed magnetic \optical x 10	rpm
Torque	Torque x 1000	Nm
Torque Min/Max (int)	Torque Min/Max (int) x 10	Nm
Speed Min/Max (int)	Speed Min/Max (int) x 10	rpm
Temperature Stator	Temperature Stator x 1000	°C
Status (long)	Status	
Alarm (long)	Alarm	

Table 8-1 Possible data which can be sent by CAN interface

This table shows the possible data which can be sent by the CAN interface. Every CAN message consists of an identifier and two different measured values. For each pair of measured values you can select a separate data transmit interval.

As the example above the followin	g message will be send:
-----------------------------------	-------------------------

Long	()				1		100 values / s
Integer	0			1 2			3		
Byte	0	1	2	3	4	5	6	7	
	Sp	eed Max/Min			Torque Max/Min			Min	Identifier ID 0x109

Table 8-2 Example of data sent by CAN interface

8.2 Terminal Program

If the program "TCUConfig" is not more available, you can conduct all the settings using the Terminal Program.

8.3 Main Menu

To activate the se	erial inter	face pre	ss the key '#	 ********************
* All-	In-One V2.	49.2010202	S∕N O	
********	**********	*********	************	******
Torque 1 Mag∕Opt Speed Ind. Speed	-0.0 - 0.0 0.0	(a) (b) (c)	Set Zero Test Signal Reset Status	
Frequency - Torque 1 Frequency - Mag/Opt Spe Frequency - Ind. Speed	59993 ed O O			
Stator Temperature	44.1			
Test Counter	0			
CAN error Status	2 0x00000802			
Operating hour	13:21:51:20			
-n- Refresh -F- Filter Figure 8-11 Terminal I	-A- Alarm Program: Ma	-0- Output ain Menu	-T- Torquemeter	-S- Setup

On the left site the values for torque and speed are shown as well as the internal stator temperature and status indicators.

ATESTEO

Key	Description
а	Zero calibration. Set torque = 0;
	Attention: Be sure that no torque is invoked when setting to
	zero-torque!
b	Activate the test signal. The rotor supplies a frequency shift of
	10kHz from center frequency.
С	Reset the status word. (see chapter 5.8.3)
F	Submenu: Filter settings for torque and speed
А	Submenu: Alarm thresholds for torque and speed
0	Submenu: Configure analog and digital outputs (analog/CAN)
т	Submenu: Torquemeter settings (sensitivity/rated torque)
S	Submenu: Setup settings and calibration routines (analog/CAN)
Can	0- no error 1- <128 errors/s 2- >128 errors/s 3-Bus off
error	

Table 8-3 Key description of the Terminal Program

8.3.1 Filter Settings

Different digital filters can be activated in stator.

- Two independent IIR filters are dedicated to the torque channel with 6 different cut-off frequencies.
- One moving average filter is provided for F1i/F2i, F1iS/F2iS installed speed sensor. (The magnetic speed sensor as shown in the picture below is optionally available).

*	Filter Settings	*
*******	*****	*****
TORQUE FILTER		
(1) Filter A	off	
(2) Filter B	100Hz	
SPEED FILTER		
(3) Mag/Opt Speed	off	
(4) Ind. Speed	120	

-n- Refresh

-e- EXIT_

Figure 8-12 Filter settings

Key	Description
1	Cut-off frequency (-3dB) of filter A for torque
	measurement
	Filter settings:
	-0- off
	-1- 250Hz
	-2- 150Hz
	-3- 100Hz
	-4- 50Hz
	-5- 10Hz
	-6- 1HZ
2	Cut-off frequency (-3dB) of filter B for torque
	measurement.
	(Filter settings see above)
3	Moving-average filter depth for the inductive speed
	sensor (standard).
	-0- off
4	Moving-average filter depth for the magnetic speed
	sensor (optional).

Table 8-4 Key description of filter settings

8.3.2 Alarm Settings

It is important to take care of the maximum safe operating conditions specified for the torquemeter. Not only to prevent the rotor from damage due to hazardous operating states but also to protect the test bench against demolition.

Alarm thresholds can be set for the maximum approvable torque and speed. The alarm signal is provided through open collector outputs at the 16 pole connector X752 and as CAN messages.

For circuit details and sample circuits please refer to chapter "Electrical specifications".

Figure 8-13 Tera Term: Alarm settings

ATESTEO

Key	Description
'1'	Alarm threshold max. torque
'2'	Alarm threshold min. torque
'3'	Alarm threshold max. speed (inductive and magnetic)
'4'	Alarm threshold min. speed (inductive and magnetic)

Table 8-5 Key description of alarm setting

8.3.3 Output Settings

The measured values of torque and speed can be outputted as analog signals and as CAN messages simultaneously. It is possible to choose between the different filter types to set up each output channel individually.

Three analog outputs are available.

Channels A and B are selectable for torque and speed output with different voltage output ranges defined. Analog output A can be switched to a current loop whereby it is no longer available as calibrated voltage output. Hence the current output takes its place.

Channel C provides the internal stator temperature or status information about the stator. An output voltage level of 4.9V represents a faultless operation whereas a voltage of 0.1V is representing an error and the torquemeter has to be checked.

Voltage analog output C	Description	
<0.1V	Cable break. Check electrical connection	
0.1V	Error! Check the status word by software to determine the error condition.	
4.9V	No error.	

If the outputted voltage drops below 0.1V a line break occurred.

Table 8-6 Description of voltage analog output C

The CAN message configuration is simply performed by entering an identifier and a transmit interval for the referred signal. A minimum time interval of 1ms can be chosen. The number of totally transmitted data per second is limited by the bus speed of CAN, so the current set data rate is calculated and displayed as 'Current Message rate'. The predetermined maximum message rate can neither be crossed nor altered. For the CAN bus settings refer to chapter "CAN".

If the mounted speed sensor is not in selection, it can be activated with the "TCUConfig" software, Menu "Service" "Setup Speed Sensor" or in Terminal "output settings" "x".

For circuit details and sample circuits please refer to chapter "Electrical specifications".

***********	*****	**********	*********	***********
Out	put S	lettings		*
**********	*****	**********	*********	************
MA1 FA				
N mag/opth	(d 1 E 0			
Status	iui in	•		
252[Msg/sec]]			
IDENTIFIER	[dec]	TX INTERVAL	[ms]	
(1)	108	(f)	0	
(2)	109	(g)	0	
(3)	110	(h)	500	
(4)	100	(i)	4	
(5)	101	(i)	0	
(6)	106	(k)	0	
(7)	107	(1)	0	
DEPARTAN STOCKE IN				
mag. and p	ind/op	Intel	n Defe	aab a EVIT
	Md1 FA N mag/opth Status 252[Msg/sec] IDENTIFIER (1) (2) (3) (4) (5) (6) (7) mag. and s	Md1 FA N mag/optMd1 FA Status 252[Msg/sec] IDENTIFIER [dec] (1) 108 (2) 109 (3) 110 (4) 100 (5) 101 (6) 106 (7) 107 mag. and ind/op	Output Settings Md1 FA N mag/optMd1 FA Status 252[Msg/sec] IDENTIFIER [dec] TX INTERVAL (1) 108 (f) (2) 109 (g) (3) 110 (h) (4) 100 (i) (5) 101 (j) (6) 106 (k) (7) 107 (1) mag. and ind/opIntel	Output Settings Md1 FA N mag/optMd1 FA Status 252[Msg/sec] IDENTIFIER [dec] TX INTERVAL [ms] (1) 108 (f) 0 (2) 109 (g) 0 (3) 110 (h) 500 (4) 100 (i) 4 (5) 101 (j) 0 (6) 106 (k) 0 (7) 107 (1) 0 mag. and ind/opIntel

Figure 8-14 Output settings

Key	Description		
'a', 'b'	Select signal for analog output A/B		
	-0- Md1 Filter A		
	-1- Md1 Filter B		
	-2- N mag Filter (optional)		
	-3- N ind Filter		
'1''7'	CAN message identifier		
'f''l'	CAN transmit interval		
'x'	Installed speed sensors.		
Current	Maximum configurable message rates		
Message	1Mbps 6500msg/s		
rate	500kbps 3700msg/s		
	250kbps 1850msg/s		
	125kbps 1000msg/s		
	100kbps 800msg/s		
	10kbps 76msg/s		

Table 8-7 Key description for analog output settings

8.3.4 Torquemeter settings

To adapt a torquemeter to an evaluation unit the calibration parameters obtained from the 'Torque Transducer Test Report' must be correctly filled out in the 'Torquemeter Settings' menu. The frequency registered as 'Zero Output' is acquired when performing a zero calibration [(a) Set Zero)].

***	*****	*********	*****	*******
×		Torquemeter	Settings	*
***	******	************	*******	******
(b)	MD Type Serial Number	0 1321	(7) Zero Output [Hz]	59994
(1) (2) (3)	Sensitivity + [Hz/Nm] Sensitivity - [Hz/Nm] Rated Torgue [Nm]	31.5792 31.5792 650.0	(9) Calibration Jump [V] (0) Calibration Jump [Hz]	16.3 2988
x-7			(p) PS. on∕off (s) PS. voltage (y) PS. AUTO voltage	1 14.4
(X)	Imp/Rev ind.	60 600	Frequency - Torque 1	59 <u>9</u> 93
(m)	Max. Speed [rpm]	25000	(a) Set Zero	

-n- Refresh	-r- Read Param.	-S- Selftest	-e- EXIT
Figure 8-15 To	rquemeter settings		

ATESTEO

Key	Description	
'b'	Serial number. The Serial number from the enclosed	
	torquemeter is shown.	
'1'	Sensitivity + characteristic value: torquemeter torque	
	clockwise (pos)	
'2'	Sensitivity - characteristic value: torquemeter torque	
	anticlockwise (neg)	
'3'	Rated Torque	
'x'	Number of pulses per revolution of the inductive speed	
	sensor (fixed by mechanical design of the torquemeter)	
'z'	Impulses per revolution (speed measuring system)	
'm'	Maximum speed	
	Full scale value of analog output	
'7'	Zero Output (Zero frequency)	
	This value is automatically acquired when performing a	
	zero calibration	
'9'	Calibration Jump [V]	
	Necessary inductive power supply amplitude to engage	
	the test signal.	
	I his parameter is calculated automatically and must not	
	be altered by the user!	
'0'	Calibration Jump [Hz]	
	l est signal frequency shift in Hz.	
	This parameter is calculated automatically and must not	
lal		
Ъ.	PS. 01/011	
5	ro. Vollage	
1.71	PS Auto voltage	
ÿ	PO. Auto voltage	
	Automatically setup the inductive power supply.	

Key	Description	
	The following parameters are assigned	
	(s) PS. Voltage	
	(7) Zero Output	
	(9) Calibration Jump [V]	
	(0) Calibration Jump [Hz]	
'a'	Zero calibration. Set torque = 0; Attention: Be sure that	
	no torque is invoked when setting to zero-torque!	
'r'	Read parameters stored into the rotor electronics.	
'S'	Perform self-test of the measuring system	

Table 8-8 Key description torquemeter settings

ATESTEO

8.3.5 Read parameters

The calibration parameters can be obtained from the 'Torque Transducer Test Report' as well as read out of the torquemeter electronics itself. After the transfer procedure is performed the user is prompted to setup the evaluation unit with the read values.

*	PARAMETER FRO	OM TOROUEMETER	*
******	*****	********	*************
read parameter	10100001010		
Тур	0	Temp1 electr.	36.4
Serial number	1321	Temp2 middle	33.6
Sensitivity1-	31.5792	Temp3 output	32.4
Sensitivity1+	31.5792	Temp4 input	34.1
		Temp max.	77.2
Rated torque1	650.0		

map error: 0:192

Setup with new values? (y/n)_ Figure 8-16 Parameter from torquemeter

After pressing the key 'Y', the parameters received from the torquemeter will be stored into the evaluation unit (Stator).

8.3.6 Self test

The self-test can be used to perform a test routine verifying the rudimentary functions of the measurement system. The following settings will be checked:

- inductive power supply settings
- Comparing the saved serial number with the received serial number. If the serial numbers are different, then the new values for the sensitivity will be saved automatically.
- Stability test of the inductive power supply.

If an error occurs it is indicated by the status word supplied by the evaluation unit.

*******	**************	***************************************
*	Se	lftest *
*****************	*******	***************************************
read parameter	10100001010	
Serial no. old	1321	
Serial no. new	1321	
Sensitivity1 old	31.5792	31.5792
Sensitivity1 new	31.5792	
Vcc= Vcc + 0,3V	14.7	o.k.
	59993	
Vcc= Vcc - 0,3V	14.1 59993	o.k.
Vcc= Cal	16.3 62982	o.k.
Error Code	0	

Figure 8-17 Self test

8.3.7 Analog setup

To adapt the analog outputs of the evaluation unit to a data acquisition system it is possible to adjust the voltage offset and the voltage output range. The current loop output range is selectable between 0..20mA and 4..20mA.

Note: The analog outputs are pre-calibrated during the production process of the evaluation unit. It is not recommended to recalibrate the analog outputs by untrained personal.

For circuit details and sample circuits please refer to chapter "Electrical specifications".

🛄 T	era Term - COM1 ¥T				×
File	<u>E</u> dit <u>S</u> etup C <u>o</u> ntrol <u>W</u> indow <u>H</u> elp				
***	***********************	*********	**********	****	
*		Analog	Setup	*	
***	*********	*********	*************	****	
(A)	Calibrate Analog Output A				
(B)	Calibrate Analog Output B				
(0)	Calibrate Analog Output C				
10	Offect Apples A [1]	0 000			
띬	Offset Anglog P [U]	0.000			
(3)	Offset Analog C [0]	6 666			
N°	office marge o [*]	0.000			
I					
(5)	Analog Output Range A				
(0)	нпатоў ойсрис капуе в	-100+100			
(9)	Activate Current Output	ព			
(0)	Current Output Range	420mA			
(1)	Calibrate Current Output				
-n-	Refresh		-e- E	хіт 🛛	•

Figure 8-18 Analog setup

	Calibration of the analog outputs. The calibration		
'A''C'	parameters were determined by ATESTEO and have been		
	saved into the unit. No calibration is needed!		
'1''3' It is possible to set a offset voltage for each analog ou			
	Here it is possible to set a offset voltage for each analog		
5,6	output.		
101	Attention: If activated the voltage output of channel A is		
9	not scaled!		
'0'	Select the output range of the current loop output.		
	Calibration of the current loop output. The calibration		
Т	parameters were determined by ATESTEO and have been		
	saved into the unit. No calibration is needed!		
'4' (for	The Input Control is used to switch between the two		
F1i/F2i)	channels of a dual range torquemeter		

Table 8-9 Key description of analog setup

8.3.8 CAN setup

The CAN bus setup enables the user to adapt the torquemeter CAN interface to an existing CAN topology supported by the customer. It is not only possible to alter system parameters such as speed and identifier length but also to choose between different byte orders and message formats. For circuit details and sample circuits please refer to chapter "Electrical specifications".

🛄 Tera Term - COM1 ¥T									
Eile	Edit Setup Control Window Help								
*** *	*************************	CAN S	********** etup	**********	*******	***** ▲			
***	**************************	***********	******	***********	********	****			
(1) (2)	CONTINUOUS TRANSMISSION CAN speed [KBps]	1 500							
(3)	Identifier Length [Bit]	11							
(4) (5)	Message Format Byte Order	Long Intel							
(6)	Rx Identifier [Dez]	32							
-n-	Refresh				-e- I	EXIT_ 💌			

Figure 8-19 CAN set up

Key	Description
'1'	If activated, the defined messages will be transmitted
	(activate data transmission)
'2'	CAN bus speed
	-1000- 1Mbps
	-500- 500kbps
	-250- 250kbps
	-125- 125kbps
	-100- 100kbps
	-10- 10kbps
'3'	Length of the message identifiers
	-11- 11 bit
	-29- 29 bit
'4'	Numeric format transmitted in a message
	-long- 32bit signed integer
	-float- 32bit IEEE754 floating point value
'5'	Byte order inside a CAN message
	-Intel- The data transfer begins with the least
	significant byte.
	-Motorola- The data transfer begins with the most
	significant byte.
'6'	The CAN identifier dedicated to the command messages
	the stator receives to be externally controlled.

Table 8-10 Key description Can Set up

With the following messages it is possible to control the evaluation unit: Note: The values must be sent as "long" even if "float" is selected as numeric data format. The right identifier length (11 or 29 Bit) must be set.

Long 0 1 0 1 2 3 Integer 2 3 0 1 4 5 6 7 Byte CAN message 0 2000 transmission start CAN message 0 2001 transmission stop Zero calibration. Attention: Be sure that no torgue is 0 1201 invoked when setting to zerotorque! 0 1202 Activate test signal 0 1203 Deactivate test signal 0 1211 Reset status 1212 0 Read status Read serial number 0 1213 of torquemeter 1214 Perform self-test 0

Identifier: 11Bit / 29Bit

Table 8-11 identifier: 11 Bit / 29Bit

Ttopiy nom											
Long		(0				1				
Integer	()		1		2		3			
Byte	0	1	2	3	4	5	6	7			
	Last command)	X				

Reply from torquemeter (rx-identifier + 1)

Table 8-12 Reply from torquemeter (rx-identifier + 1)

Read serial number:

Reply from torquemeter (rx-identifier + 1)

Long	0						1		
Integer	0			1	2		3		
Byte	0	1	2	3	4	5	6	7	
	Last command				Se	erial r	numb	er	

Table 8-13 Reply from torque-meter (rx-identifier + 1)

Read status:

Reply from torquemeter (rx-identifier + 1)

						/			
Long	0			1					
Integer	()		1	2	2		3	
Byte	0	1	2	3	4	5	6	7	
	Last command					Sta	tus		

Table 8-14 Reply from torquemeter (rx-identifier + 1)

Status 32 Bit (format long)

			(1011	110(1	eng/			T	Т	1				r		1
ST Bit 7	ST Bit 6	ST Bit 5	ST Bit 4	ST Bit 3	ST Bit 2	ST Bit 1	ST Bit 0	Calf tact active	ספוו-ופטו מכוועפ	Selection 1	Selection 0	Error 1	Error 0	Overflow	Zero point reset	Test signal
1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	,	6	5	4	3	2	1	0
							Simulation					Alarm IR	Alarm N min	Alarm N max	Alarm Md min	Alarm Md max
3	3	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1
1	0	9	8	7	6	5	4	3	3	2	1	0	9	8	7	6
Tabl	le 8-1:	5 Stat	us 32	Bit (fc	ormat	long)										
Ala	rm 3:	2 Bit	(forn	nat lo	ong)						1					
											Alarm IR	Alarm N min		Alarm N max	Alarm Md min	Alarm Md max
1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3		2	1	0

Table 8-16 Alarm 32 Bit (format long)

(Upper 16 Bits not used. Read out as zeroes)

Min	/Max (format int)				
	Speed Minimum			Speed Maximum	
31		16	15		0
	Torque Minimum			Torque Maximum	
63		48	47		32

Table 8-17 Min/Max (format int)

After the zero point calibration procedure the status bit 'zero point reset' is set. It can only be cleared by resetting the status word. With the help of the error code it is possible to check whether the command is accomplished successfully or not.

Error 0/1:

Error 1	Error 0	
0	1	Zero point reset not possible
1	0	No calibration jump
	- /.	

Table 8-18 Error 0/1

Selection 0/1:

Selection 1	Selection 0	
0	0	Md1 / N1
0	1	Md2 / N1
1	0	Md1 / Md2

Table 8-19 Selection 0/1

ST bits:

ST								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							4	SP + 0,5V
							I	Md1 not stable
						4		SP + 0,5V
						I		Md1 not stable
					4			SP CAL
					I			No calibration jump
				1				Self-test not active
								Found new values
			4					for
			1					inductive power
								supply
		4						Same serial number
		1						different sensitivity
	4							Can't read
	1							sensitivity
								New torquemeter
1								installed
								New sensitivity
								saved

Table 8-20 ST bits

9 Use of the Control signal / status

The input, Control can be used to release the self-test, to reset the zero point and to engage the test signal. If Analog out C is set to status it provides the status information about the stator. An output voltage level of 4.9V represents a faultless operation whereas a voltage of 0.1V is representing an error and the torquemeter has to be checked. If the outputted voltage drops below 0.1V a line break occurred. For circuit details and sample circuits please refer to chapter "Electrical specifications".

9.1 Self-test

9.2 Zero calibration

Set Control for 5 seconds. With the falling edge of the input signal the zero point is calibrated.

9.3 Test signal

Set Control for 7 seconds. After 7 seconds the test signal will be engaged as long as the signal has a voltage level of 24V. By setting Control=0V the test signal will be disabled.

9.4 LED Status

9.4.1 Green LED

In normal mode the green LED is blinking with a frequency of 1 Hz indicating the evaluation unit is powered up. LED ist blinking faster during the start-up phase when the supply voltage is automatically adjusted (Auto Setup = 0).

9.4.2 Red LED

As long as the evaluation unit operates faultlessly the red LED is not lighting. If an error occurs (e.g. alarm threshold exceeded) the LED lights blink continuously. If the rotor sends no signal, or the automatic search for the power-supply amplitude is engaged, or the data transfer between stator and rotor is in progress the red LED is blinking

ATESTEO

10 Digital Interface

10.1 Alarm Md/N

If the alarm thresholds have been exceeded due to overload or overspeed the open collector outputs "Alarm Md" and "Alarm N" are set. The digital outputs are open-collector types, so that the measured output signal is inverted. The maximum collector-emitter voltage is maximum rated with 36V (50mA).

For circuit details and sample circuit please refer to chapter "Electrical specifications".

10.2 Alarm IR

If the data transmission between the rotor and the stator can no longer be guaranteed faultless, the output "Alarm IR" is set. The degree of failure is observed by monitoring the intensity of infrared-light being transmitted. The threshold is factory calibrated and cannot be altered. For circuit details and sample circuit please refer to chapter "Electrical specifications".

10.3 Reset Alarm

If alarm thresholds are exceeded the corresponding digital output is set. With the help of the input "Reset Alarm" it is possible to reset the alarms being displayed. The status bits are also cleared when using this feature. Apply a voltage >4V to trigger the reset function. The maximum input voltage is rated with 30V.

For circuit details and sample circuit please refer to chapter "Electrical specifications".

- 11 Special DT2 functions
- 11.1 Channel selection by using an external signal

Please read chapter with general CAN Setup (8.3.8) before setting up DT2 function.

Default settings as supplied to customer.

Menu 'Settings' 'Analog'

(4) Special DT Function.= 1

🖳 Tera Term - COM1 VT								
File	Edit Setup Control Window Help							
: * ***	************************************	Analog	**************************************	** 🔺				
(A) (B) (C)	Calibrate Analog Output A Calibrate Analog Output B Calibrate Analog Output C							
(1) (2) (3)	Offset Analog A [V] Offset Analog B [V] Offset Analog C [V]	0.000 0.000 0.000						
(4)	Special DT Function	1						
(5) (6)	Analog Output Range A Analog Output Range B	0V+10V 0V+10V						
(9) (0)	Activate Current Output Current Output Range nt Output	0 420mA	-					
-n-	Refresh		-e- EXI	т 🔽				

Figure 11-1 Menu Sttings Analog

With this the following Inputs / Outputs are active. X751 / X752 PIN 16 Channel 1 -> torque 1 -> low range Channel 2 -> torque 2 -> high range

Connector	Name	PIN	In/Out	Level	Function
X751/752	DT2	16	IN	0V or open	Switch to channel 2 (high range)
X751/752	DT2	16	IN	5V-24V	Switch to channel 1 (low range)
X751/752	Analogue out C	9	Out	0,1V	Channel 2 active (high range)
X751/752	Analogue out C	9	Out	2,5V	System busy
X751/752	Analogue out C	9	Out	4,9V	Channel 1 active (high range)
X751/752	Analogue out A	10	Out	Selected Range	if Pin9= 0,1V - > channel 2 if Pin9= 4,9V - > channel 1 if Pin9= 2,5V - > not defined

Figure 11-2 Connector specification X751 / X752

X750

Connector	Name	PIN	In/Out	Level	Function
X750	Control	9	IN	0V or	No function
				open	
X750	Control	9	IN	24V	Setup inductive
				for 3s	power supply.
					With the falling
					edge of the input
					signal the
					procedure starts.
X750	Control	9	IN	24V	Set actual torque
				for 5s	output = 0.
					With the falling
					edge of the input
					signal the zero
					point is
					calibrated
X750	Control	9	IN	24V	Set actual torque
				>7s	output to
					calibration value
					(test signal).
					By setting
					Control=0V the
					test signal will
					be disabled.

Table 11-11Connector specification X750

11.2 Channel selection by using a terminal program

Connect the serial port to X751/752 Start a terminal on the PC with the settings:

Tera Term: Serial port	setup					
Port: Baud rate:	СОМ1 - 19200 -	ОК				
Data:	8 bit 💌	Cancel				
Parity:	none 🔻					
Stop:	1 bit 💌	Help				
Flow control:	none 💌					
Transmit delay 0 msec/char 0 msec/line						

Figure 11-3 Tera Term: Serial port setup

Press #

💻 Tera Term - COM1 VT			
File Edit Setup Control Window Hel	p		
**************************************	r Fxi V2.62.21	.11210 S⁄N O	Model U
Torque 2 Mag/Opt Speed	-0.02 0.0	(a) Set Zero (b) Test Signal (c) Reset Status	
Frequency - Ind. Speed Frequency - Mag/Opt Spee	59961 rd 0	(1) Input Channel DT2 Kanal	Md2 / N 2 2
Stator Temperature	44.1_		
Test Counter	0		
CAN error Status	2 0x0000820		
Operating hour	03:42:55		
-n- Refresh -F- Filter	-A- Alarm -O-	Output -T- Torquemet	er -S- Setup 💆

Figure 11-4 Tera Term

Input (1) Input Channel = 1 switch to channel 1 (low torque range) Input (1) Input Channel = 2 switch to channel 2 (high torque range)

DT2 Channel shows t	the active chann	el
---------------------	------------------	----

DT2 channel	Function
1	channel 1 (low torque range active)
2	channel 2 (high torque range active)
3	ERROR Channel undefined.

Table 11-2 DT2 Channel shows active channel

If you switch between the two ranges with the help of the terminal '(4) Special DT Function' Will be set to 0, but not saved.

After switching off / on the unit the system switches to the channel which is selected by X751/752 Pin 16.

If you want to switch only by terminal or by CAN then set

'(4) Special DT Function.=0 ' with the help of the terminal.

11.3 Channel selection by using a CAN interface

Please read the chapter **Fehler! Verweisquelle konnte nicht** gefunden werden. interface for CAN setup.

Long		C)			1]		
Integer	()		I	2	2	3	3	
Byte	0	1	2	3	4	5	6	7	
		C)			20	00		Start CAN-message
									transmission
		C)			20	01		Stop CAN- message
									transmission
		C)			12	01		zero calibration
									Attention: Make sure
									that there is no
									torque during this
									action!
		C)		1202				Activate test signal
		C)			12	03		Deactivate test
								signal	
	0				1205			Md1 (Torque1)	
									channel1 / N
		C)			12	206		Md2 (Torque2)
									channel2 / N
		C)			12	11		Reset Status
		C)			1212			Read state
		C)			1213			Read out the serial
								number of the torque	
									measuring
		C)			12	14		Perform self-test

Table 11-3 Channel selection by using a CAN interface

N = speed Md1 = torque1 = channel1 = low range Md2 = torque2 = channel2 = high range

If you switch between the two ranges with the help of the CAN interface

'(4) Special DT Function.' will be set to 0, but not saved. After switching off / on the unit the system switches to the channel which is selected by X751/752 Pin 16.

If you want to switch only by terminal or by CAN then set

'(4) Special DT Function.=0 ' with the help of the terminal.

For example:

Settings: 'Output'

📟 Tera Term - COM1 VT			
File Edit Setup Control Window Help			
**************************************	Output Setting	**************************************	***************************************
ANALOG OUTPUTS (a) Analog Output A: Md2 1 (b) Analog Output B: N may (c) Analog Output C: Stat	`A ∣∕opt Is		
Current Messagerate: 210[Ms	[/sec]		
CAN OUTPUT DATA IDENT Alarm threshold (1) Minimum-Maximum (2) Status/Temperature (3) Md1/2 / N mag/opt Filt A (4) Md1/2 / N mag/opt Filt B (5)	FIER [dec] TX I 108 (f) 109 (g) 102 (h) 103 (i) 104 (j)	NTERVAL [ms] 0 100 10 10	
(x) Speed Sensor Type: mag∕u	pt	-n- Refr	resh -e- EXIT 💌

Figure 11-5 Example Output settings

'Setup' 'CAN'

📕 Т	era Term - COM1 VT			X
File	Edit Setup Control Window Help			
*** *	***************************************	**************************************	**********	^
(1) (2) (3)	Continuous transmission CAN speed [KBps] Identifier Length [Bit]	1 500 11		
(4) (5)	Message Format Byte Order	Long Intel		
(6)	Rx Identifier [Dez]	32		
-n-	Refresh		-e- EXIT	~

Figure 11-6 Example for setup CAN

Example

Long		0			1				
Integer	()		1	2	2		3	
Byte	0	1	2	3	4	5	6	7	
Send	Send 0					12	05		Select channel1
ID=32									
Receive		Status Temperature				Wait			
Status						Stator			While (busy =1)
ID=102									
Receive	Status			Т	Temperature			If selection = 0 ->	
Status						Stator			channel1 active
ID=102									If selection = 1 ->
									channel2 active

Table 11-4 Example for CAN message

Channel 2 active

٣	Receive / Transmit						
	Symbol / ID 🛛 🔺	Multiplexer / DLC	Data		Timeo	Period	Count
ve	Jyndol/D — Hadgekerjoc 102 <empty>/8</empty>		Testsignal ZeroTorque_reset Overflow Error selection busy ST_Bit Alarm_Mdmax Alarm_Mdmin Alarm_Mdmin	0	100	524	
Recei			Alarm_Nmin Alarm_IR nc Temperature	=0 =0 =0 =45.1			
	103	<empty>/8</empty>	Md1_2_FilterA N_mag_opt_Filter	=0.0 A=0.0	0	10	5242
	104	<empty>/8</empty>	<pre>Md1_2_FilterB N_mag_opt_Filter</pre>	=0.0 B=0.0	0	10	5242

Figure 11-7 Channel 2 active

đ	Symbol / ID 🔺	Multiplexer / DLC	Data	Timeo	Period	Count
	021h	8	B5 04 00 00 00 08 00 00		21999	2
	102	<empty>/8</empty>	Testsignal =0 ZeroTorque_reset=0 Overflow =0 Error =0 selection =0 busy =1 ST_Bit =8 Alarm_Mdmax =0 Alarm_Mdmin =0 Alarm_Mmin =0 Alarm_IR =0 nc =0 Temperature =45.1	0	100	2226
	103	<empty>/8</empty>	Md1_2_FilterA =0.0 N_mag_opt_FilterA=0.0	0	10	22266
	104	<empty>/8</empty>	Md1_2_FilterB =0.0 N_mag_opt_FilterB=0.0	0	10	22267

Figure 11-8 Busy

Channel 1 active

(Receive / Transmit						
	Symbol / ID 🔺	Multiplexer / DLC	Data		Timeo	Period	Count
	021h	8	B5 04 00 00 00 08 0	00 00		21007	3
	102	<empty>/8</empty>	😑 Testsignal	=0	0	100	2798
			ZeroTorque_reset	=0			
			Overflow	=0			
			Error	=0			
			selection	=0			
			busy	=0			
			ST_Bit	=8 -0			
			Alarm_Homax	-0			
≧			Alarm Nmey	=0			
y			Alarm Nmin	=0			
$\hat{\mathbf{v}}$			Alarm IR	=0			
			nc -	=0			
			Temperature	=45.1			
	103	<empty>/8</empty>	🚽 Md1_2_FilterA	=0.0	0	10	27984
			N_mag_opt_Filter	A=0.0			
	104	<empty>/8</empty>	Md1_2_FilterB	=0.0	0	10	27984
			N_mag_opt_Filter	B=0.0			
	Symbol / ID 🔺	Multiplexer / DLC	Data	Period	Count	Trigger	Creator
	SendenTCU19	<empty>/8</empty>	NC =0 command=1205	Wait	3 1	lanua 1	User

Figure 11-9 Channel 1 active

11.3.1 Definition Status

ID=1(02
-------	----

Byte	7	6	5	4	3	2	1	0
bit	70	70	70	70	70	70	70	70
Pic	bbbbbbbb	bbbbbbbb	bbbbbbbb	bbbbbbbb	gffeedca	hhhhhhh	xxnmlkji	xxxxxxx

Table 11-5 Definition Status

a=Testsignal bit

c=ZeroTorque_reset bit

d=Overflow bit

e=Error word

f=selection

g= busy bit

- h=ST_Bit word
- i= Alarm_Mdmax bit
- j= Alarm_Mdmin bit
- k= Alarm_Nmax bit

I= Alarm_Nmin bit

m= Alarm_IR bit

n = nc bit

b=Temperature long /f:0.001

12 Plug connection

12.1 Plug connection F iS & F eS type,

X750	1 N inductive -
12 pol female	2 N inductive +
Conivers	3 N2+ (magnetic/optional)
combined	4 N2- (magnetic/optional)
power-supply	5 N1+ (magnetic/optional)
measurement signals	6 N1- (magnetic/optional)
RS422	7 Mdf1-
Md – Torque	8 Mdf1+
N - Speed	9 Control
	10 VCC 24V
	11 GND (24V)
	12 GND (24V)
X 751/752	1 TXD RS232
16 pole male	2 RXD RS232
Conivers	3 Ground
combinated	4 Ground
anlog/digital	5 CANH
measurement Signals	6 CANL
	7 MD I out
	8 Analogout B
Md – Torque	9 Analogout C
N - Speed	10 Analogout A
	11 Alarm Md
	12 Ground
	13 Alarm N
	14 Alarm IR
	15 Reset Alarm (in)
	16 DT2 (in)

Connecting Cable F1iS / F2iS, FLFM1iS, FLFM1eS 12 pole Conivers Plug Female

1	RS422	N inductive-	twisted pair 0.14mm ²	white
2	RS422	N inductive+		brown
3	RS422	N2+	twisted pair	grey
4	RS422	N2-	0.14mm ²	pink
5	RS422	N1+	twisted pair	blue
6	RS422	N1-	0.14mm ²	red
7	RS422	Mdf1-	twisted pair	yellow
8	RS422	Mdf1+	0.14mm ²	green
9		Control	0.5mm ²	white
10	U in	24V 2A	0.5mm ²	green
11		GND	0.5mm ²	yellow
12		GND	0.5mm ²	brown

LI-2YC11Y 250V si/gr 4x0.5+4x2x0.14

16 pole Conivers Plug	Male
------------------------------	------

1	RS232	TXD	twicted pair	white
2	RS232	RXD	0.25mm ²	brown
3		GND	twicted pair	green
4		GND	0.25mm ²	yellow
5		CANH		grey
6		CANL	twisted pair 0.25mm²	pink
7		MD I out	twicted pair	blue
8		Analogout B	0.25mm ²	red
9		Analogout C	twisted pair	black
10		Analogout A	0.25mm ²	violet
11		Alarm Md	twisted pair	grey/pink
12		GND	0.25mm ²	red/blue
13		Alarm N	twisted pair	white/green
14		Alarm IR	0.25mm ²	grown/green
15		Reset Alarm	twisted pair	white/yellow
16		DT2 in	0.25mm ²	yellow/brown

LIYCY 250V 8x2x0.25

12.2 Plug connection F1i/F2i

X740	A Signal Mdf2-	X740	A Signal Mdf2-
12 pole Mil male	B Signal Mdf2+	12 pol. Mil	B Signal Mdf2+
combined	C Signal N1+	combined	C Signal N1+
power-supply	D Signal N1-	power supply	D Signal N1-
measurement	E Signal N2+	signal	E Signal N2+
signals	F Signal N2-	(central cable)	F Signal N2-
(Central cable)	G Signal Mdf1-		G Signal Mdf1-
	H Signal Mdf1+		H Signal Mdf1+
	J Control		J Control
	K VCC 24V		K VCC 24V
	L GND (24V)		L GND (24V)
	M GND (24V)		M GND (24V)

X 741	A Analog output C	X 741	A Analog output C
10-pole female	B TXD RS232	10-pole combined	B TXD RS232
combined	C RXD RS232	Analogue /Digital	C RXD RS232
Analogue / Digital	D Ground	Measuring Signals	D Gr
measurement	E CANH		E CANH
signals	F CANL		F CANL
	G MD I out		G MDiout
	H Analog output B		H Ana output B
	I Analog output A		I Ana output A
	K Ground		K Ground

Α	RS422	Mdf2-	white
В	RS422	Mdf2+	brown
С	RS422	N1+	grey
D	RS422	N1-	pink
Е	RS422	N2+	blue
F	RS422	N2-	red
G	RS422	Mdf1-	yellow
н	RS422	Mdf1+	green
J		Control	white 0,5
К	U in	24V 2A	green 0,5
L		GND	yellow 0,5
М		GND	brown 0,5

12 pole Mil male connector cable (Connector female)

10 pole Mil female connector cable (Connector male)

Α		Analogout C	white 0,5	
В	RS232	TXD	blue	
С	RS232	RXD	red	
D		GND	brown 0,5	
Е		CANH	yellow	
F		CANL	green	
G		MD I out	yellow 0,5	
Н		Analogout B	pink	
I		Analogout A	white	
к		GND	grey	brown

All colours are for cables LI-2YC11Y 250V si/gr 4x0,5+4x2x0,14 supplied by Muckenhaupt & Nusselt (same colour mark drilled pairs)

12.3 Electrical specifications

12.3.3 RS422 Outputs

12.3.4 Alarm Outputs

Alarm Reset Input

12.3.5 Control Input

12.3.6 Analog Outputs A/B

12.3.8 Current Output

CAN

13 General references

13.1 Overvoltage protection

To avoid destructions the sending electronic on the rotating side will be switched off at overvoltage. The analog output of the torque-signal shows undefined values. If this is the case, so the amplitude of the supply voltage must be reduced. Sometimes it can happen, that the torquemeter must be turned "OFF" for several seconds to deactivate the overvoltage protection. All outputs are short-circuit-protected.

13.2 Torquemeter without Test Signal

In some cases it is possible, that the torque flange supports no test signal. Please refer to your calibration sheet to see the right values.

13.3 Hotline

At any troubles, call our hotline workdays from 8:00h to 17:00h +49 (0)2404-9870-583/584

or you can reach us by email service-pm@atesteo.com

13.4 Flash update

A microcontroller with an internal Flash-ROM is used, so that a firmware update can easily be performed by a special upload-software via a RS232 serial connection.

Flash update:

- 1. Turn off the unit (switch off power supply).
- 2. Connect the stator via RS232 with the PC.
- 3. Run the Flash-programmer software and enter settings as below.

📴 Fujitsu MB91360 Flash Program	nmer ¥3.3						
Connect via COM-Po Disconnect Device Typ	rt 1 no. of attempts : 40 e : MB91F364	Prog Baudrate	38400 💌				
Automatic BootROM_Function	Automatic BootROM_Functions Flash_Functions Options						
File to program : P	:\All_in_Stator_105.mhx		Browse				
Automatic Mode	Connect Dump Flashloader Start Flashloader Initialize Flashmode Blank Check Erase flash, if necessary Program flash and verify Call application at address						
ready			×				
		(2) Abort	Quit				

Figure 13-1 Flash update

- 4. Set Device Type=MB91F364 and choose by pressing the button 'Browse' the firmware file.
- 5. Press button 'Automatic Mode' and turn on the converter in less than 2 seconds.
- 6. If the firmware is installed properly the programmer software prompts "ALL OK".
- 7. Turn off the unit.
- 8. Turn on the unit.

The firmware update has been installed correctly.

14 Calibration of the Torquemeter

The following procedure will be recommended by means of an example.

Preparation:

- The Torquemeter is mounted at the machine and without torque. The machine is blocked.
- The inductive power supply must be checked. If the voltage is to low, it can be that the measuring error becomes higher.
- The connection from the lever arm to the torquemeter must be absolute planar.
- Use the same screws as for the real testing.
- The screws have to be screw on with the specify torque with a torque spanner.

Figure 14-1 Calibration system

Calibration

Pos.	To do	Remarks	Frequency
0	Torquemeter without lever	Write down the zero	59998 Hz
	arm.	torque frequency	
1	Mount calibration lever	Use a balance weight	60000 Hz ->
	arms.	to set the frequency	59998 Hz
		to frequency of pos.0.	
2	Preload torquemeter	Duration about 2	80000 Hz
	clockwise (positive) with	minutes	
	rated torque		
3	Unload torquemeter		
3	Mount calibration lever		
	arms for anticlockwise		
	torque		
4	Preload torquemeter	Duration about 2	
	anticlockwise (negative)	minutes	
	with rated torque		
5	Unload torquemeter		
5	Mounting of the calibration		
	lever arms for clockwise		
	torque		
6	Load torquemeter	Reading of the	P1=80000 Hz
	clockwise with rated	measuring value after	
	torque	one minute.	
		Max value P1.	
7	Relieve torquemeter	Reading of the	N1=60008 Hz
		measuring value after	
		one minute.	
		Zero value1 N1.	
	Mounting of the calibration	Set the frequency to	60008 Hz

	Lever arms for	N1 with the balance	
	anticlockwise torque.	weight.	
8	Load torquemeter	Reading of the	P2=40000 Hz
	anticlockwise (negative)	measuring value after	
	with rated torque	one minute.	
		Min value P2	
9	Relieve torquemeter	Reading of the	N2=59992 Hz
		measuring value after	
		one minute.	
		Zero value1 N2	
	Mounting of the calibration	Calculate the zero	N0=60000 Hz
	lever arms for clockwise	torque to calculate	
	torque.	the sensitivity and the	
		error curve	
		N0 = (N1+N2)/2	

With that the adjustment is finished and the sensitivity values can be calculated.

Zero point

$$N0 = \frac{N2 + N1}{2}; \ N0 = \frac{60008Hz + 59992Hz}{2} = 60000$$

Sensitivity1 (positive)

$$S1 = \frac{P1 - N0}{Mdnenn}; S1 = \frac{80000Hz - 60000Hz}{1000Nm} = 20.000\frac{Hz}{Nm}$$

Sensitivity2 (negative)

$$S1 = \frac{P2 - N0}{Mdnenn}; S1 = \frac{40000Hz - 60000Hz}{1000Nm} = -20.000\frac{Hz}{Nm}$$

The torquemeter has to be setup with the new sensitivity values.

Figure 14-3 Torquemeter settings

With the help of the following procedure the error graph will be determined and the calibration will be checked.

Calibration Torquemeter (example rated Torque 1000 Nm)

Figure 14-4 Calibration graph

Pos.	To do	Remarks	Frequency/Hz	Torque /Nm
	Check out, that	Set the zero	69992	-0,4
	position 1-9 is	point with the		
	done	help of the		
		balance		
		weight. (From		
		Pos.09)		
10	Load torque	Read of the	63991	199,55
	clockwise =	value after		
	200Nm	one minute		
	(rated torque/ 5)			
11	Load torque	Read of the	67992	399,6
	clockwise =	value after		
	400Nm	one minute		
	(rated torque/ 5)			
12 –	Load torque	Read of after		
19	clockwise	every one		
	600 Nm	minute	71994	599,7
	800 Nm		75997	799,85
	1000 Nm		80000	1000
	800 Nm		76003	800,15
	600 Nm		72004	600,2
	400 Nm		68007	400,35
	200 Nm		64008	200,4
	0 Nm		60008	0,4
19	Mounting of the	Set the	60008	0,4
	calibration lever	frequency to		
	arms for	the last value		
	anticlockwise	with the		
		balance		

		weight.		
20	Load torque	Read of the	56008	-199,6
	anticlockwise =	value after		
	-200Nm	one minute		
	(- rated torque / 5)			
21 –	Load torque	Read of after		
29	anticlockwise	every one		
	-400 Nm	minute	52007	-399,65
	-600 Nm		48004	-599,82
	-800 Nm		44002	-799,9
	-1000 Nm		40000	-1000
	-800 Nm		43996	-800,2
	-600 Nm		47996	-600,2
	-400 Nm		51993	-400,35
	-200 Nm		55992	-200,4
	0 Nm		59991	-0,45

Table 14-2

The result is the following error graph:

This error graph is the linearity/ hysteresis graph of the torquemeter. In this example it is a torquemeter with an accuracy class of 0, 05.

Hysteresis tips

The hysteresis is a typical material property. Older torquemeter have better hysteresis characteristics than the newer ones. The main reason for the hysteresis is a static torque. The amplitude of the hysteresis depends on the maximum torque. If we halve the maximum torque in the example above, the hysteresis will also be half. In this case we see $\pm 0.02\%$ of rated torque. If you use a torquemeter only clockwise or anticlockwise the hysteresis can be neglected. For the best accuracy it is import and to inspect the read measuring task and set the torque to zero at the right time.

Figure 14-5 Error graph

15 Recommendations for resetting the zero point of Torque measuring flange

With each measuring element, from a flexible spring element that is measured by its elastic deformation, there will always be a zero drift even if no load is applied.

Related to DMS based Torque measuring systems, zero-drifts in a load-free condition can be caused by the following circumstances:

15.1 Thermal influences

Despite of a complex temperature compensation a zero-drift related to high temperature fluctuations can always be observed. Due to various temperature influences interacting permanently with the torquemeter, another reason for exiguous zero-drifts is given.

The temperature stability defined in the technical specifications, e.g. $0.1\%/10^{\circ}$ K is determined by the allowed temperature drift of ±0.1% of the rated torque per 10° Kelvin difference.

15.2 Hysteresis-caused influences

If a sensor during a test is mostly loaded in one direction it can indicate a drift after the test is terminated. This drift cannot to be traced back to a temperature compensation problem but to the natural hysteresis of the sensor and strain gauges.

The change of the zero value depends on the torque applied or on the test duration. In any case, the value of the zero-drift variation will not be larger than the linearity and hysteresis specified in the technical data for the sensor.

ATESTEO

15.3 Aging

If a strain gauge based sensor is dynamically loaded for a long period of time a zero-drift can occur. This value depends on the cycle count and the strain amplitude. This zero-drift will affect the sensitivity of the sensor.

Even though this is a natural effect for strain gauge sensors, ATESTEO torque sensors drift is very low due to a low sensitivity at nominal torque.

15.4 Lateral force influence

Considering that each torque sensor is part of a powertrain, every component linked to the sensor generates a lateral force. This load will be influenced by the size and installation of the components. This lateral force will be added to the measuring signal. If the installation is performed as specified in the technical specifications, this influence will be extremely small.

15.5 General

All the above mentioned items that influence the zero-drift are still in the range of calibration tolerance, as long as the sensor is properly maintained and handled and no transportation damages occurred to the sensor or strain gauges.

Due to the fact that all the above mentioned zero-drifts can happen in different situations at the same time it is very difficult to suggest a general zero-reset procedure.

After considering all the information acquired through our experience and customers feedback we can suggest and comment different scenarios for a proper zero-reset of the torque sensor.

- A zero-reset is only allowed if the torque is zero.
- If a great zero shift (>10 Hz) is observed during the mounting of the torquemeter please check the adapter flange due to the mechanical properties. A lower zero-shift can be reset.
- The test bench engineer has to decide, whether the accuracy request of the actual test requires a reset of the zero point. Generally it is possible to improve the accuracy by resetting the zero torque after the warming-up period of the test stand and before starting the measurement.
- If the zero shift is greater than 2% of the rated torque, the torquemeter must be checked. These tests (recalibration and other tests) have to be done by ATESTEO to find out the reason for the malfunction.
- A zero shift of 0.05% of the rated torque per month has no influence to the accuracy of the system.

16 EC Manufacturer's Declaration:

Manufacturer's Declaration-according to 2014 / 30 / EU

The Manufacturer:

ATESTEO GmbH

Declares, that the measuring system

Named:

F0IS, F1IS, F2IS, F23IS, F3IS, F4IS, F1I, F2I, FLFM1IS, FLFM1eS

Is conform to the requirements of the EMV-directive 2014/30/EU.

Reference to relevant harmonized Standards:

- EN61326-1:2013 (Electrical equipment for measurement, control and laboratory use) EMC requirements - Part 1: General requirements (IEC 61326-1:2012); German version EN 61326-1:2013)
- EN61326-2-3:2013 (Electrical equipment for measurement, control and laboratory use) EMC requirements - Part 2-3: Particular requirements-Test configuration, operational conditions and performance criteria for transducers with integrated or remote signal conditioning (IEC 61326-1:2012)

Alsdorf, 06.07.2016

)0 Dipl.-Ing. Wolfgang Schmitz

Geschäftsführer: DipL-Ing. Wolfgang Schmitz, Dr. Georg Bletschacher, Dr. Lei Kan Sitz: Alsdorf HRB 3483. Ust.-IdNr. DE 121 677 156 Deutsche Bank, IBAN DE95 3907 0026 0249 0833 06, BIC DEUTDEDKISO LBBW, IBAN DE50 6005 0101 7401 5157 71, BIC SOLADEST Commerzbank AG, IBAN DE29 3984 0013 0120 1268 00, BIC COBADEFFIXIX

1/1 Rener (DARAS A

Notes

Excellence in drivetrain testing

Sie möchten mehr über unsere Produkte, Lösungen und Services aus den Bereichen Messsysteme, Fahrzeugausrüstung und Aktuatoren erfahren? Dann rufen Sie uns einfach an unter +49 2404 9870-570 oder mailen Sie uns an equipment@atesteo.com. Ihr persönlicher ATESTEO Ansprechpartner ist gern für Sie da.

Want to learn more about our products, solutions and services in the fields of measurement systems, vehicle equipment and actuators? Then please call us at +49 2404 9870-570 or email us at equipment@atesteo.com. Your personal ATESTEO contact is always at your disposal.

ATESTEO GmbH & Co. KG Konrad-Zuse-Str. 3 52477 Alsdorf Telephone +49 2404 9870-0 E-Mail pm-service@atesteo.com www.atesteo.com